skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singha, Ratnadwip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The existence of a quantum critical point (QCP) and fluctuations around it are believed to be important for understanding the phase diagram in unconventional superconductors such as cuprates, iron pnictides, and heavy fermion superconductors. However, the QCP is usually buried deep within the superconducting dome and is difficult to investigate. The connection between quantum critical fluctuations and superconductivity remains an outstanding problem in condensed matter. Here combining both electrical transport and Nernst experiments, we explicitly demonstrate the onset of superconductivity at an unconventional QCP in gate-tuned monolayer tungsten ditelluride ( WTe 2 ) , with features incompatible with the conventional Bardeen-Cooper-Schrieffer scenario. The results lead to a superconducting phase diagram that is distinguished from other known superconductors. Two distinct gate-tuned quantum phase transitions are observed at the ends of the superconducting dome. We find that quantum fluctuations around the QCP of the underdoped regime are essential for understanding how the monolayer superconductivity is established. The unconventional phase diagram we report here illustrates a previously unknown relation between superconductivity and QCP. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract 1D charge transport offers great insight into strongly correlated physics, such as Luttinger liquids, electronic instabilities, and superconductivity. Although 1D charge transport is observed in nanomaterials and quantum wires, examples in bulk crystalline solids remain elusive. In this work, it is demonstrated that spin‐orbit coupling (SOC) can act as a mechanism to induce quasi‐1D charge transport in the Ln3MPn5(Ln = lanthanide; M = transition metal; Pn = Pnictide) family. From three example compounds, La3ZrSb5, La3ZrBi5, and Sm3ZrBi5, density functional theory calculations with SOC included show a quasi‐1D Fermi surface in the bismuthide compounds, but an anisotropic 3D Fermi surface in the antimonide structure. By performing anisotropic charge transport measurements on La3ZrSb5, La3ZrBi5, and Sm3ZrBi5, it is demonstrated that SOC starkly affects their anisotropic resistivity ratios (ARR) at low temperatures, with an ARR of ≈4 in the antimonide compared to ≈9.5 and ≈22 (≈32 after magnetic ordering) in La3ZrBi5and Sm3ZrBi5, respectively. This report demonstrates the utility of spin‐orbit coupling to induce quasi‐low‐dimensional Fermi surfaces in anisotropic crystal structures, and provides a template for examining other systems. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. We show that simple chemical exfoliation methods can be used to exfoliate non-van der Waals, chain-containing compounds to 1D nanoribbons. After this process, they still retain magnetic behavior. 
    more » « less
  4. Flat bands that do not merely arise from weak interactions can produce exotic physical properties, such as superconductivity or correlated many-body effects. The quantum metric can differentiate whether flat bands will result in correlated physics or are merely dangling bonds. A potential avenue for achieving correlated flat bands involves leveraging geometrical constraints within specific lattice structures, such as the kagome lattice; however, materials are often more complex. In these cases, quantum geometry becomes a powerful indicator of the nature of bands with small dispersions. We present a simple, soft-chemical processing route to access a flat band with an extended quantum metric below the Fermi level. By oxidizing Ni-kagome material Cs2Ni3S4to CsNi3S4, we see a two orders of magnitude drop in the room temperature resistance. However, CsNi3S4is still insulating, with no evidence of a phase transition. Using experimental data, density functional theory calculations, and symmetry analysis, our results suggest the emergence of a correlated insulating state of unknown origin. 
    more » « less
    Free, publicly-accessible full text available September 20, 2025
  5. Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of T d WTe 2 , 1 T MoTe 2 , and 2 H MoTe 2 , as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials. Published by the American Physical Society2024 
    more » « less