- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Skarbinski, Maya (2)
-
Alatalo, Katherine (1)
-
Armus, Lee (1)
-
Barcos-Muñoz, Loreto (1)
-
Evans, Aaron S (1)
-
Goodman, Alyssa_A (1)
-
Jeffreson, Sarah_M_R (1)
-
Koda, Jin (1)
-
Lanz, Lauranne (1)
-
Larson, Kirsten L (1)
-
Luo, Yuanze (1)
-
Medling, Anne M (1)
-
Nyland, Kristina E (1)
-
Otter, Justin A (1)
-
Patil, Pallavi (1)
-
Petric, Andreea O (1)
-
Peñaloza, Fernando (1)
-
Rowlands, Kate (1)
-
Salim, Diane (1)
-
Sanders, David B (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the CO(1–0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100 GHz continuum in 16 of the 28 CARMA GOALS galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morphologies, though in the majority of cases the average velocity fields show a gradient consistent with rotation. We fit the full continuum spectral energy distributions (SEDs) of each of the sources using eithermagphysor SED3FIT (if there are signs of an AGN) to derive the total stellar mass, dust mass, and SFRs of each object. We adopt a value determined from luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) ofαCO= M⊙(K km s−1pc2)−1, which leads to more physical values forfmoland the gas-to-dust ratio. Mergers tend to have the highest gas-to-dust ratios. We assume the cospatiality of the molecular gas and star formation and plot the CARMA GOALS sample on the Schmidt–Kennicutt relation, where we find that they preferentially lie above the line set by normal star-forming galaxies. This hyper-efficiency is likely due to the increased turbulence in these systems, which decreases the freefall time compared to star-forming galaxies, leading to “enhanced” star formation efficiency. Line wings are present in a non-negligible subsample (11/28) of the CARMA GOALS sources and are likely due to outflows driven by AGNs or star formation, gas inflows, or additional decoupled gas components.more » « less
-
Skarbinski, Maya; Jeffreson, Sarah_M_R; Goodman, Alyssa_A (, Monthly Notices of the Royal Astronomical Society)ABSTRACT We study the physical drivers of slow molecular cloud mergers within a simulation of a Milky Way-like galaxy in the moving-mesh code arepo, and determine the influence of these mergers on the mass distribution and star formation efficiency of the galactic cloud population. We find that 83 per cent of these mergers occur at a relative velocity below 5 km s−1, and are associated with large-scale atomic gas flows, driven primarily by expanding bubbles of hot, ionized gas caused by supernova explosions and galactic rotation. The major effect of these mergers is to aggregate molecular mass into higher-mass clouds: mergers account for over 50 per cent of the molecular mass contained in clouds of mass M > 2 × 106 M⊙. These high-mass clouds have higher densities, internal velocity dispersions and instantaneous star formation efficiencies than their unmerged, lower mass precursors. As such, the mean instantaneous star formation efficiency in our simulated galaxy, with its merger rate of just 1 per cent of clouds per Myr, is 25 per cent higher than in a similar population of clouds containing no mergers.more » « less
An official website of the United States government
