Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Residential yards and gardens can have surprisingly high plant diversity. However, we still do not understand all the factors that drive diversity in individual gardens, or how gardens scale up to create larger patterns of urban biodiversity. For example, social interactions between neighbors could affect whether they mimic each other’s yard design, affecting spatial turnover in plant communities. Further, socio-economic differences between neighborhoods might result in distinct plant assemblages across a city. In this paper, we used fieldwork, GIS, and spatial statistics to examine the variability in front yard vegetation—both cultivated and spontaneous plants—in 870 yards in Chicago, Illinois (USA). Our goals were to understand diversity and spatial patterning of plant communities in residential neighborhoods and how they vary with scale, considering alpha, beta, and gamma diversity. We addressed the following questions: (1) How do alpha, beta, and gamma diversity of cultivated and spontaneous plants vary between neighborhoods with different socioeconomic characteristics? (2) Within neighborhoods, do we see spatial autocorrelation in front-yard plant communities? If so, do those spatial patterns affect plant diversity at the neighborhood scale? We found diverse plant communities and distinct spatial patterns across Chicago. Richness and composition of both spontaneous and cultivated plants differed between neighborhoods, with some differences explained by socioeconomic factors such as education. Spontaneous and cultivated plants showed significant spatial autocorrelation, although that spatial autocorrelation generally did not influence neighborhood-scale diversity. Knowledge of these spatial patterns and their socioeconomic drivers could be exploited to increase adoption of environmentally-friendly yard management practices across a city.more » « less
-
ABSTRACT We present the confirmation and characterization of three hot Jupiters, TOI-1181b, TOI-1516b, and TOI-2046b, discovered by the TESS space mission. The reported hot Jupiters have orbital periods between 1.4 and 2.05 d. The masses of the three planets are 1.18 ± 0.14 MJ, 3.16 ± 0.12 MJ, and 2.30 ± 0.28 MJ, for TOI-1181b, TOI-1516b, and TOI-2046b, respectively. The stellar host of TOI-1181b is a F9IV star, whereas TOI-1516b and TOI-2046b orbit F main sequence host stars. The ages of the first two systems are in the range of 2–5 Gyrs. However, TOI-2046 is among the few youngest known planetary systems hosting a hot Jupiter, with an age estimate of 100–400 Myrs. The main instruments used for the radial velocity follow-up of these three planets are located at Ondřejov, Tautenburg, and McDonald Observatory, and all three are mounted on 2–3 m aperture telescopes, demonstrating that mid-aperture telescope networks can play a substantial role in the follow-up of gas giants discovered by TESS and in the future by PLATO.more » « less
-
Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
