skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, James A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Ultra-high-molecular-weight polyethylene (UHMWPE) components for orthopedic implants have historically been integrated into metal backings by direct-compression molding (DCM). However, metal backings are costly, stiffer than cortical bone, and may be associated with medical imaging distortion and metal release. Hybrid-manufactured DCM UHMWPE overmolded additively manufactured polyetheretherketone (PEEK) structural components could offer an alternative solution, but are yet to be explored. In this study, five different porous topologies (grid, triangular, honeycomb, octahedral, and gyroid) and three surface feature sizes (low, medium, and high) were implemented into the top surface of digital cylindrical specimens prior to being 3D printed in PEEK and then overmolded with UHMWPE. Separation forces were recorded as 1.97–3.86 kN, therefore matching and bettering the historical industry values (2–3 kN) recorded for DCM UHMWPE metal components. Infill topology affected failure mechanism (Type 1 or 2) and obtained separation forces, with shapes having greater sidewall numbers (honeycomb-60%) and interconnectivity (gyroid-30%) through their builds, tolerating higher transmitted forces. Surface feature size also had an impact on applied load, whereby those with low infill-%s generally recorded lower levels of performance vs. medium and high infill strategies. These preliminary findings suggest that hybrid-manufactured structural composites could replace metal backings and produce orthopedic implants with high-performing polymer–polymer interfaces. 
    more » « less
  3. Abstract. Benthic foraminiferal assemblages are useful tools for paleoenvironmental studies but rely on the calibration of live populations to modern environmental conditions to allow interpretation of this proxy downcore. In regions such as the region offshore of Thwaites Glacier, where relatively warm Circumpolar Deep Water is driving melt at the glacier margin, it is especially important to have calibrated tracers of different environmental settings. However, Thwaites Glacier is difficult to access, and therefore there is a paucity of data on foraminiferal populations. In sediment samples with in situ bottom-water data collected during the austral summer of 2019, we find two live foraminiferal populations, which we refer to as the Epistominella cf. exigua population and the Miliammina arenacea population, which appear to be controlled by oceanographic and sea ice conditions. Furthermore, we examined the total foraminiferal assemblage (i.e., living plus dead) and found that the presence of Circumpolar Deep Water apparently influences the calcite compensation depth. We also find signals of retreat of the Thwaites Glacier Tongue from the low proportion of live foraminifera in the total assemblages closest to the ice margin. The combined live and dead foraminiferal assemblages, along with their environmental conditions and calcite preservation potential, provide a critical tool for reconstructing paleoenvironmental changes in ice-proximal settings. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract. Silt-rich meltwater plume deposits (MPDs) analyzed from marine sediment cores have elucidated relationships that are clearly connected, yet difficult to constrain, between subglacial hydrology, ice-marginal landforms, and grounding-zone retreat patterns for several glacial catchments. Few attempts have been made to infer details of subglacial hydrology, such as flow regime, geometry of drainage pathways, and mode(s) of sediment transport through time, from grain-scale characteristics of MPDs. Using sediment samples from MPD, till, and grounding-zone proximal diamicton collected offshore of six modern and relict glacial catchments in both hemispheres, we examine grain shape distributions and microtextures (collectively, grain micromorphology) of the silt fraction to explore whether grains are measurably altered from their subglacial sources via meltwater action. We find that 75 % of all imaged grains (n = 9400) can be described by 25 % of the full range of measured shape morphometrics, indicating grain shape homogenization through widespread and efficient abrasive processes in subglacial environments. Although silt grains from MPDs exhibit edge rounding more often than silt grains from tills, grain surface textures indicative of fluvial transport (e.g., v-shaped percussions) occur in only a modest number of grains. Furthermore, MPD grain surfaces retain several textures consistent with transport beneath glacial ice (e.g., straight or arcuate steps, (sub)linear fractures) in comparable abundances to till grains. Significant grain shape alteration in MPDs compared to their till sources is observed in sediments from glacial regions where (1) high-magnitude, potentially catastrophic meltwater drainage events are inferred from marine sediment records and (2) submarine landforms suggest supraglacial melt contributed to the subglacial hydrological budget. This implies that quantifiable grain shape alteration in MPDs could reflect a combination of high-energy flow of subglacial meltwater, persistent sediment entrainment, and/or long sediment transport distances through subglacial drainage pathways. Integrating grain micromorphology into analysis of MPDs in site-specific studies could therefore aid in distinguishing periods of persistent, well-connected subglacial discharge from periods of sluggish or disorganized drainage. In the wider context of deglacial marine sedimentary and bathymetric records, a grain micromorphological approach may bolster our ability to characterize ice response to subglacial meltwater transmission through time. This work additionally demonstrates that glacial and fluvial surface textures are retained on silt-sized quartz grains in adequate amounts for microtexture analysis, which has heretofore been conducted exclusively on the sand fraction. Therefore, grain microtextures can be examined on silt-rich glaciogenic deposits that contain little to no sand as a means to evaluate sediment transport processes. 
    more » « less
  5. All known life is homochiral. DNA and RNA are made from “righthanded” nucleotides, and proteins are made from “left-handed” amino acids. Driven by curiosity and plausible applications, some researchers had begun work toward creating lifeforms composed entirely of mirror-image biological molecules. Such mirror organisms would constitute a radical departure from known life, and their creation warrants careful consideration. The capability to create mirror life is likely at least a decade away and would require large investments and major technical advances; we thus have an opportunity to consider and preempt risks before they are realized. Here, we draw on an indepth analysis of current technical barriers, how they might be eroded by technological progress, and what we deem to be unprecedented and largely overlooked risks. We call for broader discussion among the global research community, policy-makers, research funders, industry, civil society, and the public to chart an appropriate path forward. 
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  6. Today, relatively warm Circumpolar Deep Water is melting Thwaites Glacier at the base of its ice shelf and at the grounding zone, contributing to significant ice retreat. Accelerating ice loss has been observed since the 1970s; however, it is unclear when this phase of significant melting initiated. We analyzed the marine sedimentary record to reconstruct Thwaites Glacier’s history from the early Holocene to present. Marine geophysical surveys were carried out along the floating ice-shelf margin to identify core locations from various geomorphic settings. We use sedimentological data and physical properties to define sedimentary facies at seven core sites. Glaciomarine sediment deposits reveal that the grounded ice in the Amundsen Sea Embayment had already retreated to within ~45 km of the modern grounding zone prior to ca. 9,400 y ago. Sediments deposited within the past 100+ y record abrupt changes in environmental conditions. On seafloor highs, these shifts document ice-shelf thinning initiating at least as early as the 1940s. Sediments recovered from deep basins reflect a transition from ice proximal to slightly more distal conditions, suggesting ongoing grounding-zone retreat since the 1950s. The timing of ice-shelf unpinning from the seafloor for Thwaites Glacier coincides with similar records from neighboring Pine Island Glacier. Our work provides robust new evidence that glacier retreat in the Amundsen Sea was initiated in the mid-twentieth century, likely associated with climate variability. 
    more » « less
  7. Abstract. Ocean-driven ice loss from the West Antarctic Ice Sheet is asignificant contributor to sea-level rise. Recent ocean variability in theAmundsen Sea is controlled by near-surface winds. We combine palaeoclimatereconstructions and climate model simulations to understand past and futureinfluences on Amundsen Sea winds from anthropogenic forcing and internalclimate variability. The reconstructions show strong historical wind trends.External forcing from greenhouse gases and stratospheric ozone depletiondrove zonally uniform westerly wind trends centred over the deep SouthernOcean. Internally generated trends resemble a South Pacific Rossby wavetrain and were highly influential over the Amundsen Sea continental shelf.There was strong interannual and interdecadal variability over the AmundsenSea, with periods of anticyclonic wind anomalies in the 1940s and 1990s,when rapid ice-sheet loss was initiated. Similar anticyclonic anomaliesprobably occurred prior to the 20th century but without causing the presentice loss. This suggests that ice loss may have been triggered naturally inthe 1940s but failed to recover subsequently due to the increasingimportance of anthropogenic forcing from greenhouse gases (since the 1960s)and ozone depletion (since the 1980s). Future projections also featurestrong wind trends. Emissions mitigation influences wind trends over thedeep Southern Ocean but has less influence on winds over the Amundsen Seashelf, where internal variability creates a large and irreducibleuncertainty. This suggests that strong emissions mitigation is needed tominimise ice loss this century but that the uncontrollable future influenceof internal climate variability could be equally important. 
    more » « less
  8. Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. 
    more » « less
  9. null (Ed.)
  10. Abstract Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor. 
    more » « less