Abstract On high‐latitude continental margins sediment is supplied from land to the deep sea through a variety of processes, including iceberg and sea‐ice rafting, and bottom current transport. The accurate reconstruction of sediment fluxes from these sources through time is important in palaeoclimate reconstructions. The goal of this study was to assess a shift in the intensity of glacial processes, iceberg and sea‐ice rafting during the Pliocene through an investigation of coarse sediment deposited at the AND‐2A site in the Ross Sea and at International Ocean Discovery Program Site U1359 on the Antarctic continental rise. Terrigenous particle‐size distributions and suites of quartz grain microtextures in the sand fraction of the deep‐sea sediments were compared to those from Antarctic glaciomarine diamictites as a baseline for proximal glacial sediment in its source area. Using images acquired through Scanning Electron Microscopy, and following a quantitative approach, fewer immature and potentially glacially transported grains were found in Pliocene deep‐sea sand fractions than in ice‐contact sediments. Specifically, in the lower Pliocene interval silt and fine sand percentages are elevated, and microtextures in at least half of the sand fraction are inconsistent with a primary glacial origin. Larger numbers of chemically altered and abraded grains in the deep‐sea sand fraction, along with microtextures that are diagnostic of periglacial environments, suggest a role for eolian sediment transport. These results highlight the anomalous nature of high‐latitude sediment fluxes during prolonged periods of ice retreat. Furthermore, the identification of a significant offshore sediment flux during Antarctic deglaciation has implications for estimated nutrient supply to the Southern Ocean and the potential for high‐latitude climate feedbacks under warmer climate states. 
                        more » 
                        « less   
                    
                            
                            Insights into glacial processes from micromorphology of silt-sized sediment
                        
                    
    
            Abstract. Silt-rich meltwater plume deposits (MPDs) analyzed from marine sediment cores have elucidated relationships that are clearly connected, yet difficult to constrain, between subglacial hydrology, ice-marginal landforms, and grounding-zone retreat patterns for several glacial catchments. Few attempts have been made to infer details of subglacial hydrology, such as flow regime, geometry of drainage pathways, and mode(s) of sediment transport through time, from grain-scale characteristics of MPDs. Using sediment samples from MPD, till, and grounding-zone proximal diamicton collected offshore of six modern and relict glacial catchments in both hemispheres, we examine grain shape distributions and microtextures (collectively, grain micromorphology) of the silt fraction to explore whether grains are measurably altered from their subglacial sources via meltwater action. We find that 75 % of all imaged grains (n = 9400) can be described by 25 % of the full range of measured shape morphometrics, indicating grain shape homogenization through widespread and efficient abrasive processes in subglacial environments. Although silt grains from MPDs exhibit edge rounding more often than silt grains from tills, grain surface textures indicative of fluvial transport (e.g., v-shaped percussions) occur in only a modest number of grains. Furthermore, MPD grain surfaces retain several textures consistent with transport beneath glacial ice (e.g., straight or arcuate steps, (sub)linear fractures) in comparable abundances to till grains. Significant grain shape alteration in MPDs compared to their till sources is observed in sediments from glacial regions where (1) high-magnitude, potentially catastrophic meltwater drainage events are inferred from marine sediment records and (2) submarine landforms suggest supraglacial melt contributed to the subglacial hydrological budget. This implies that quantifiable grain shape alteration in MPDs could reflect a combination of high-energy flow of subglacial meltwater, persistent sediment entrainment, and/or long sediment transport distances through subglacial drainage pathways. Integrating grain micromorphology into analysis of MPDs in site-specific studies could therefore aid in distinguishing periods of persistent, well-connected subglacial discharge from periods of sluggish or disorganized drainage. In the wider context of deglacial marine sedimentary and bathymetric records, a grain micromorphological approach may bolster our ability to characterize ice response to subglacial meltwater transmission through time. This work additionally demonstrates that glacial and fluvial surface textures are retained on silt-sized quartz grains in adequate amounts for microtexture analysis, which has heretofore been conducted exclusively on the sand fraction. Therefore, grain microtextures can be examined on silt-rich glaciogenic deposits that contain little to no sand as a means to evaluate sediment transport processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1738942
- PAR ID:
- 10595935
- Publisher / Repository:
- EGU
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 18
- Issue:
- 5
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 2297 to 2319
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, AntarcticaSubglacial meltwater drainage can enhance localized melting along grounding zones and beneath the ice shelves of marine-terminating glaciers. Efforts to constrain the evolution of subglacial hydrology and the resulting influence on ice stability in space and on decadal to millennial timescales are lacking. Here, we apply sedimentological, geochemical, and statistical methods to analyze sediment cores recovered offshore Thwaites Glacier, West Antarctica to reconstruct meltwater drainage activity through the pre-satellite era. We find evidence for a long-lived subglacial hydrologic system beneath Thwaites Glacier and indications that meltwater plumes are the primary mechanism of sedimentation seaward of the glacier today. Detailed core stratigraphy revealed through computed tomography scanning captures variability in drainage styles and suggests greater magnitudes of sediment-laden meltwater have been delivered to the ocean in recent centuries compared to the past several thousand years. Fundamental similarities between meltwater plume deposits offshore Thwaites Glacier and those described in association with other Antarctic glacial systems imply widespread and similar subglacial hydrologic processes that occur independently of subglacial geology. In the context of Holocene changes to the Thwaites Glacier margin, it is likely that subglacial drainage enhanced submarine melt along the grounding zone and amplified ice-shelf melt driven by oceanic processes, consistent with observations of other West Antarctic glaciers today. This study highlights the necessity of accounting for the influence of subglacial hydrology on grounding-zone and ice-shelf melt in projections of future behavior of the Thwaites Glacier ice margin and marine-based glaciers around the Antarctic continent.more » « less
- 
            Earth has sustained continental glaciation several times in its past. Because continental glaciers ground to low elevations, sedimentary records of ice contact can be preserved from regions that were below base level, or subject to subsidence. In such regions, glaciated pavements, ice-contact deposits such as glacial till with striated clasts, and glaciolacustrine or glaciomarine strata with dropstones reveal clear signs of former glaciation. But assessing upland (mountain) glaciation poses particular challenges because elevated regions typically erode, and thus have extraordinarily poor preservation potential. Here we propose approaches for detecting the former presence of glaciation in the absence or near-absence of ice-contact indicators; we apply this specifically to the problem of detecting upland glaciation, and consider the implications for Earth’s climate system. Where even piedmont regions are eroded, pro- and periglacial phenomena will constitute the primary record of upland glaciation. Striations on large (pebble and larger) clasts survive only a few km of fluvial transport, but microtextures developed on quartz sand survive longer distances of transport, and record high-stress fractures consistent with glaciation. Proglacial fluvial systems can be difficult to distinguish from non-glacial systems, but a preponderance of facies signaling abundant water and sediment, such as hyperconcentrated flood flows, non-cohesive fine-grained debris flows, and/or large-scale and coarse-grained cross-stratification are consistent with proglacial conditions, especially in combination with evidence for cold temperatures, such as rip-up clasts composed of noncohesive sediment, indicating frozen conditions, and/or evidence for a predominance of physical over chemical weathering. Other indicators of freezing (periglacial) conditions include frozen-ground phenomena such as fossil ice wedges and ice crystals. Voluminous loess deposits and eolian-marine silt/mudstone characterized by silt modes, a significant proportion of primary silicate minerals, and a provenance from non-silt precursors can indicate the operation of glacial grinding, even though such deposits may be far removed from the site(s) of glaciation. Ultimately, in the absence of unambiguous ice-contact indicators, inferences of glaciation must be grounded on an array of observations that together record abundant meltwater, temperatures capable of sustaining glaciation, and glacial weathering (e.g., glacial grinding). If such arguments are viable, they can bolster the accuracy of past climate models, and guide climate modelers in assessing the types of forcings that could enable glaciation at elevation, as well as the extent to which (extensive) upland glaciation might have influenced global climate.more » « less
- 
            null (Ed.)In far-field records, the response of the East Antarctic Ice Sheet during the Pliocene shows great variability under stable greenhouse gas forcing. However, the extent, mechanisms, and feedbacks related to Pliocene Antarctic ice-sheet dynamics are poorly known from near-field archives. Here we investigate the sediment dispersal path of coarse sediment deposited as ice-rafted debris (IRD) at IODP Site U1359 on the Antarctic Wilkes Land continental rise to assess the relative importance of iceberg and sea ice rafting during the Pliocene. We analyze terrigenous particle size distributions and suites of quartz grain microtextures in ice-rafted sand in comparison to Antarctic ice-contact diamict from the Ross Sea as a baseline for glacial sediment. Using images acquired through Scanning Electron Microscopy (SEM), and following a quantitative approach, we find a smaller number of glacially weathered grains in Pliocene IRD than in ice-contact sediments, which suggests that 30-50% of the IRD is not of primary glacial or iceberg origin. Larger numbers of abraded and chemically altered grains in the IRD, along with microtextures that are diagnostic of periglacial environments, suggest a role for eolian sediment transport onto the sea ice during periods of deglaciation and then transfer to the seafloor as sea ice breaks up. Our findings are entirely consistent with modeling of the land surface exposure and surface wind field during Pliocene ice retreat. These results have implications for the interpretation of sand-dominated IRD records as proxies for ice-sheet dynamics, as well as atmospheric and oceanographic feedbacks in the high-latitude climate system.more » « less
- 
            null (Ed.)Abstract Rapid ice loss is facilitated by sliding over beds consisting of reworked sediments and erosional products, commonly referred to as till. The dynamic interplay between ice and till reshapes the bed, creating landforms preserved from past glaciations. Leveraging the imprint left by past glaciations as constraints for projecting future deglaciation is hindered by our incomplete understanding of evolving basal slip. Here, we develop a continuum model of water-saturated, cohesive till to quantify the interplay between meltwater percolation and till mobilization that governs changes in the depth of basal slip under fast-moving ice. Our model explains the puzzling variability of observed slip depths by relating localized till deformation to perturbations in pore-water pressure. It demonstrates that variable slip depth is an inherent property of the ice-meltwater-till system, which could help understand why some paleo-landforms like grounding-zone wedges appear to have formed quickly relative to current till-transport rates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    