Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report on the structural verification of metastable ice VII solidifying in the phase space of ice VI at 1.80 GPa at room temperature. Using time-resolved (TR) x-ray diffraction and TR ruby luminescence paired with high-speed microphotography utilizing a dynamic diamond anvil cell, an initial compression rate range from 0.12 to 95.84 GPa/s was explored. The solidification pressure of metastable ice VII has a potential sigmoidal dependence upon compression rate with a turnover compression rate of ∼80 GPa/s. The preferred crystallization of ice VII in the stability field of ice VI is due to the increased nucleation rate of ice VII over ice VI at 1.77 GPa that is driven by the surface energy difference between the liquid and solid phases along with the change in Gibbs free energy of solidification. The dynamic pressure-volume–compression behaviors of ice phases (VI and VII) show a lattice stiffening in both phases, especially during the compression loading. It is also found that the compression rate greatly affects the solid-solid phase transition between ice VI and VII but does not affect the liquid-solid transition between water and ice VI as much. Lastly, a third phase transition was found to occur after metastable ice VII transforms into high-density amorphous (HDA) ice, which could be a disordered hydrogen-bonded network configuration of ice VII forming out of HDA ice facilitated by the decoupling of the oxygen movement and reorientation of the molecule. These results demonstrate the complexity of a seemingly simple molecule , how it can readily change its static properties with the modification of (de)compression rate, and highlight the need to use multiple TR structural and spectroscopic probes at higher time resolutions to realize the most comprehensive understanding.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Pressure-induced phase transformations (PTs) in Si, the most important electronic material, have been broadly studied. However, strain-induced PTs in Si were never studied in situ. Here, we revealed in situ various important plastic strain-induced PT phenomena. A correlation between the particle size's direct and inverse Hall-Petch effect on yield strength and pressure for strain-induced PT is found. For 100 nm particles, strain-induced PT Si-I³Si-II initiates at 0.3 GPa versus 16.2 GPa under hydrostatic conditions; Si-I³Si-III PT starts at 0.6 GPa and does not occur under hydrostatic pressure. Pressure in small Si-II and Si-III regions is ~5-7 GPa higher than in Si-I. Retaining Si-II and single-phase Si-III at ambient pressure and obtaining reverse Si-II³Si-I PT demonstrates the possibilities of manipulating different synthetic paths. The obtained results corroborate the elaborated dislocation pileup-based mechanism and have numerous applications for developing economic defect-induced synthesis of nanostructured materials, surface treatment (polishing, turning, etc.), and friction.more » « less
-
Pressure-induced phase transformations (PTs) between numerous phases of Si, the most important electronic material, have been studied for decades. This is not the case for plastic strain-induced PTs. Here, we revealed in-situ various unexpected plastic strain-induced PT phenomena. Thus, for 100 nm Si, strain-induced PT Si-I to Si-II (and Si-I to Si-III) initiates at 0.4 GPa (0.6 GPa) versus 16.2 GPa (∞, since it does not occur) under hydrostatic conditions; for 30 nm Si, it is 6.1 GPa versus ∞. The predicted theoretical correlation between the direct and inverse Hall-Petch effect of the grain size on the yield strength and the minimum pressure for strain-induced PT is confirmed for the appearance of Si-II. Retaining Si-II at ambient pressure and obtaining reverse Si-II to Si-I PT are achieved, demonstrating the possibilities of manipulating different synthetic paths.more » « less
An official website of the United States government

Full Text Available