Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work presents an integrated approach to industrial decarbonization by converting mixed polyolefin waste into structured carbon with exceptional Joule heating properties, enabling efficient electrified hydrogen productionviaNH3decomposition.more » « lessFree, publicly-accessible full text available June 3, 2026
-
Abstract We present a proof of concept demonstration of solar thermochemical energy storage on a multiple year time scale. The storage is fungible and can take the form of process heat or hydrogen. We designed and fabricated a 4-kW solar rotary drum reactor to carry out the solar-driven charging step of solar thermochemical storage via metal oxide reduction–oxidation cycles. During the summer of 2019, the solar reactor was operated in the Valparaiso University solar furnace to effect the reduction of submillimeter cobalt oxide particles in air at approximately 1000∘C. A particle collection system cooled the reduced particles rapidly enough to maintain conversions of 84–94% for feed rates of 2.9−60.8gmin−1. The solar-to-chemical storage efficiency, defined as the enthalpy of the reduction reaction at 1000∘C divided by the solar energy input, reached 20%. Samples of the reduced cobalt oxide particles were stored in vials in air at room temperature for more than 3 years. The stored solar energy was released by reoxidizing samples in air in a benchtop reactor and by electrochemically reoxidizing samples to produce H2. Measurements of the oxygen uptake by the reduced metal oxide confirm its promise as a medium to store and dispatch solar energy over long durations. Linear sweep voltammetry and bulk electrolysis demonstrate the promise of H2 production at 0.55 V relative to the normal hydrogen electrode, 0.68 V below the 1.23 V potential required for conventional electrolysis.more » « less
-
Abstract We examined three observations of green emission events (labeled as event A, B and C, respectively) associated with red sprites as captured by amateurs. In all cases, the green emissions were recorded atop of red sprite. Based on the location of causative strokes and background star fields for events A and B, their altitudes are confined between 88 and 100 km, with the maximum brightness at 90.7 and 95.5 km, respectively. Events B and C were lit up for a second time after the recurrence of a sprite element, extending their duration to approximately 1,084 ms and 732.6 ms, much longer than that (about 500 ms) for event A; the intensity of green emissions was also enhanced due to sprite recurrence. It is inferred that the recurrence of sprite elements could affect the ambient condition by further increasing electron density and strengthening the electric field for the ghost production.more » « less
-
Abstract We study monotone cellular automata (also known as ‐bootstrap percolation) in with random initial configurations. Confirming a conjecture of Balister, Bollobás, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non‐zero for all subcritical models.more » « less
-
Arctic biodiversity is under threat from both climate-induced environmental change and anthropogenic activity. However, the rapid rate of change and the challenging conditions for studying Arctic environments mean that many research questions must be answered before we can strategically allocate resources for management. Addressing threats to biodiversity in the Arctic is further complicated by the region's complex geopolitics, as eight countries claim jurisdiction over the area, with multiple local considerations such as Indigenous sovereignty and resource rights. Here, we identify research priorities to serve as a starting point for addressing the most pressing threats to Arctic biodiversity. We began by collecting pressing research questions about Arctic biodiversity, thematizing them as either threats or actions, and then categorizing them further into 18 groups. Then, drawing on cross-disciplinary and global expertise of professionals in Arctic science, management, and policy, we considered the barriers to answering these questions and proposed potential solutions that could be implemented if barriers were overcome. Overall, our horizon scan provides an expert assessment of threats (e.g., species’ responses to climate change) and actions (e.g., a lack of fundamental information regarding Arctic biodiversity) needing attention and is intended to guide future conservation action within the Arctic.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We present multi-epoch optical spectropolarimetric and imaging polarimetric observations of the nearby Type II supernova (SN) 2023ixf discovered in M101 at a distance of 6.85 Mpc. The first imaging polarimetric observations were taken +2.33 days (60085.08 MJD) after the explosion, while the last imaging polarimetric data points (+73.19 and +76.19 days) were acquired after the fall from the light-curve plateau. At +2.33 days there is strong evidence of circumstellar material (CSM) interaction in the spectra and the light curve. A significant level of intrinsic polarizationpr = 1.02% ± 0.07% is seen during this phase, which indicates that this CSM is aspherical. We find that the polarization evolves with time toward the interstellar polarization level during the photospheric phase, which suggests that the recombination photosphere is spherically symmetric. There is a jump in polarization (pr = 0.45% ± 0.08% andpr = 0.62% ± 0.08%) at +73.19 and +76.19 days when the light curve falls from the plateau. This is a phase where polarimetric data are sensitive to nonspherical inner ejecta or a decrease in optical depth into the single-scattering regime. We also present spectropolarimetric data that reveal line (de)polarization during most of the observed epochs. In addition, at +14.50 days we see an “inverse P Cygni” profile in the H and He line polarization, which clearly indicates the presence of asymmetrically distributed material overlying the photosphere. The overall temporal evolution of the polarization is typical for Type II SNe, but the high level of polarization during the rising phase has only been observed in SN 2023ixf.more » « lessFree, publicly-accessible full text available March 20, 2026
-
Type Ia Supernovae (SNe Ia) arise from carbon oxygen white dwarfs, but the true nature of their progenitor systems and explosion mechanisms remains the subject of considerable debate. The various progenitor models and methods of ignition result in different ejecta morphologies and/or distributions of material. By observing the polarization of SNe spectra we can gather insight into the geometry of these explosions. A key diagnostic that appears to be correlated with other SN Ia properties is the change in polarization observed across the Si II 6355 Å feature near maximum light. To investigate this, we are undertaking a systematic analysis of this feature in a uniformly obtained sample of SNe Ia observed at multiple epochs as part of the Supernova Spectropolarimetry (SNSPOL) Project, which gathered data, from 2010-2018, using the CCD Imaging/Spectropolarimeter (SPOL) on the 61" Kuiper, 6.5 m MMT, and 90" Bok telescopes. Here we present a preliminary analysis of the Si II feature in a particularly well-observed object from our sample, SN 2018gv, and present 10 epochs of data spanning from 10 days before, to 22 days after, peak light. We compare our near-maximum SNSPOL data with complementary data presented by Yang et al. [1]. This work was supported by NSF grants AST-1210311 and AST-2010001, and NASA grant NNX15AU81G. References: [1] Yang, Yi et al. 2020, ApJ, 902.more » « less
An official website of the United States government

Full Text Available