This special issue of The Anatomical Record is inspired by and dedicated to Professor Kunwar P. Bhatnagar, whose lifelong interests in biology, and long career studying bats, inspired many and advanced our knowledge of the world's only flying mammals. The 15 articles included here represent a broad range of investigators, treading topics familiar to Prof. Bhatnagar, who was interested in seemingly every aspect of bat biology. Key topics include broad themes of bat development, sensory systems, and specializations related to flight and diet. These articles paint a complex picture of the fascinating adaptations of bats, such as rapid fore limb development, ear morphologies relating to echolocation, and other enhanced senses that allow bats to exploit niches in virtually every part of the world. In this introduction, we integrate and contextualize these articles within the broader story of bat ecomorphology, providing an overview of each of the key themes noted above. This special issue will serve as a springboard for future studies both in bat biology and in the broader world of mammalian comparative anatomy and ecomorphology.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
NA (Ed.)
Abstract Multiprincipal-element alloys are an enabling class of materials owing to their impressive mechanical and oxidation-resistant properties, especially in extreme environments1,2. Here we develop a new oxide-dispersion-strengthened NiCoCr-based alloy using a model-driven alloy design approach and laser-based additive manufacturing. This oxide-dispersion-strengthened alloy, called GRX-810, uses laser powder bed fusion to disperse nanoscale Y2O3particles throughout the microstructure without the use of resource-intensive processing steps such as mechanical or in situ alloying3,4. We show the successful incorporation and dispersion of nanoscale oxides throughout the GRX-810 build volume via high-resolution characterization of its microstructure. The mechanical results of GRX-810 show a twofold improvement in strength, over 1,000-fold better creep performance and twofold improvement in oxidation resistance compared with the traditional polycrystalline wrought Ni-based alloys used extensively in additive manufacturing at 1,093 °C5,6. The success of this alloy highlights how model-driven alloy designs can provide superior compositions using far fewer resources compared with the ‘trial-and-error’ methods of the past. These results showcase how future alloy development that leverages dispersion strengthening combined with additive manufacturing processing can accelerate the discovery of revolutionary materials.
-
Abstract Nasal anatomy in rodents is well-studied, but most current knowledge is based on small-bodied muroid species. Nasal anatomy and histology of hystricognaths, the largest living rodents, remains poorly understood. Here, we describe the nasal cavity of agoutis ( Dasyprocta spp.), the first large-bodied South American rodents to be studied histologically throughout the nasal cavity. Two adult agoutis were studied using microcomputed tomography, and in one of these, half the snout was serially sectioned and stained for microscopic study. Certain features are notable in Dasyprocta . The frontal recess has five turbinals within it, the most in this space compared to other rodents that have been studied. The nasoturbinal is particularly large in dorsoventral and rostrocaudal dimensions and is entirely non-olfactory in function, in apparent contrast to known muroids. Whether this relates solely to body size scaling or perhaps also relates to directing airflow or conditioning inspired air requires further study. In addition, olfactory epithelium appears more restricted to the olfactory and frontal recesses compared to muroids. At the same time, the rostral tips of the olfactory turbinals bear at least some non-olfactory epithelium. The findings of this study support the hypothesis that turbinals are multifunctional structures, indicating investigators should use caution when categorizing turbinals as specialized for one function (e.g., olfaction or respiratory air-conditioning). Caution may be especially appropriate in the case of large-bodied mammals, in which the different scaling characteristics of respiratory and olfactory mucosa result in relative more of the former type as body size increases.more » « less
-
Abstract Herein, we compared the developmental maturity of the cranium, limbs, and feeding apparatus in a perinatal common vampire bat relative to its mother. In addition, we introduce a method for combining two computed tomographic imaging techniques to three‐dimensionally reconstruct endocasts in poorly ossified crania. The
Desmodus specimens were scanned using microcomputed tomography (microCT) and diffusible iodine‐based contrast‐enhanced CT to image bone and soft tissues. Muscles of the jaw and limbs, and the endocranial cavity were segmented using imaging software. Endocranial volume (ECV) of the perinatalDesmodus is 74% of adult ECV. The facial skeletal is less developed (e.g., palatal length 60% of adult length), but volumes for alveolar crypts/sockets of permanent teeth are nearly identical. The forelimb skeleton is uniformly less ossified than the distal hind limb, with no secondary centers ossified and an entirely cartilaginous carpus. All epiphyseal growth zones are active in the brachium and antebrachium, with the distal radius exhibiting the greatest number of proliferating chondrocytes arranged in columns. The hind limb skeleton is precociously ossified from the knee distally. The musculature of the fore limb, temporalis, and masseter muscles appear weakly developed (6–11% of the adult volume). In contrast, the leg and foot musculature is better developed (23–25% of adult volume), possibly enhancing the newborn's capability to grip the mother's fur.Desmodus is born relatively large, and our results suggest they are born neurally and dentally precocious, with generally underdeveloped limbs, especially the fore limb. -
Abstract The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities between
Rousettus leschenaultii andDesmodus rotundus , such as perinatal ossification of the first ethmoturbinal. However, inRousettus , ossification of turbinals is demonstrated as either perichondrial or endochondral. InDesmodus , perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy inRousettus . Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may “model” via selective resorption, showing some similarity to bone. -
Abstract Comparative studies are a common way to address large‐scale questions in sensory biology. For studies that investigate olfactory abilities, the most commonly used metric is olfactory bulb size. However, recent work has called into question the broad‐scale use of olfactory bulb size. In this paper, we use three neuroanatomical measures with a more mechanistic link to olfactory function (number of olfactory sensory neurons (OSNs), number of mitral cells (MCs), and number of glomeruli) to ask how species with different diets may differ with respect to olfactory ability. We use phyllostomid bats as our study system because behavioral and physiological work has shown that fruit‐ and nectar‐feeding phyllostomids rely on odors for detecting, localizing, and assessing potential foods, while insect‐eating species do not. Therefore, we predicted that fruit‐ and nectar‐feeding bats would have larger numbers of these three neuroanatomical measures than insect‐eating species. In general, our results supported the predictions. We found that fruit‐eaters had greater numbers of OSNs and glomeruli than insect‐eaters, but we found no difference between groups in number of MCs. We also examined the allometric relationship between the three neuroanatomical variables and olfactory bulb volume, and we found isometry in all cases. These findings lend support to the notion that neuroanatomical measures can offer valuable insights into comparative olfactory abilities, and suggest that the size of the olfactory bulb may be an informative parameter to use at the whole‐organism level.
-
Abstract Almost 75 years of research has been devoted to producing superalloys capable of higher operating temperatures in jet turbine engines, and there is an ongoing need to increase operating temperature further. Here, a new disk Nickel-base superalloy is designed to take advantage of strengthening atomic-scale dynamic complexions. This local phase transformation strengthening provides the alloy with a three times improvement in creep strength over similar disk superalloys and comparable strength to a single crystal blade alloy at 760 °C. Ultra-high-resolution chemical mapping reveals that the improvement in creep strength is a result of atomic-scale η (D024) and χ (D019) formation along superlattice stacking faults. To understand these results, the energy differences between the L12and competing D024and D019stacking fault structures and their dependence on composition are computed by density functional theory. This study can help guide researchers to further optimize local phase transformation strengthening mechanisms for alloy development.
-
null (Ed.)Abstract Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.more » « less