skip to main content

Search for: All records

Creators/Authors contains: "Smolek, Karel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Cosmic Ray Extremely Distributed Observatory (CREDO) pursues a global research strategy dedicated to the search for correlated cosmic rays, so-called Cosmic Ray Ensembles (CRE). Its general approach to CRE detection does not involve any a priori considerations, and its search strategy encompasses both spatial and temporal correlations, on different scales. Here we search for time clustering of the cosmic ray events collected with a small sea-level extensive air shower array at the University of Adelaide. The array consists of seven one-square-metre scintillators enclosing an area of 10 m × 19 m. It has a threshold energy ~0.1 PeV, and records cosmic ray showers at a rate of ~6 mHz. We have examined event arrival times over a period of over 2.5 years in two equipment configurations (without and with GPS timing), recording ~300 k events and ~100 k events. We determined the event time spacing distributions between individual events and the distributions of time periods which contained specific numbers of multiple events. We find that the overall time distributions are as expected for random events. The distribution which was chosen a priori for particular study was for time periods covering five events (four spacings). Overall, these distributions fit closelymore »with expectation, but there are two outliers of short burst periods in data for each configuration. One of these outliers contains eight events within 48 s. The physical characteristics of the array will be discussed together with the analysis procedure, including a comparison between the observed time distributions and expectation based on randomly arriving events.« less
  2. The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic-ray ensembles (CRE): groups of at least two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g., as products of photon–photon interactions), and exotic scenarios (e.g., as results of decay of Super-Heavy Dark Matter particles). Their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic-ray energy spectrum, with a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. As the CRE are predominantly expected to be spread over large areas and, due to the expected wide energy range of the contributing particles, such a CRE detection might only be feasible when using all available cosmic-ray infrastructure collectively, i.e., as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics communitymore »to actively join or to contribute to the research dedicated to CRE and, in particular, to pool together cosmic-ray data to support specific CRE detection strategies.« less
  3. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.