Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. The recent and exquisite astrometric, photometric, and radial velocity measurements of the Gaia mission resulted in a substantial advancement of the determination of the orbits for old star clusters, including the oldest Milky Way globular clusters (MW GCs). Aims. The main goal of the present paper is to use the new Gaia data release 3 (DR3) and the VISTA Variables in the Via Láctea Extended Survey (VVVX) measurements to obtain the orbits for nearly a dozen new MW GC candidates that have been poorly studied or previously unexplored. Methods. We use the Gaia DR3 and VVVX databases to identify bona fide MW GC candidates, namely VVV-CL160, Patchick 122, Patchick 125, Patchick 126, Kronberger 99, Kronberger 119, Kronberger 143, ESO 92-18, ESO 93-08, Gaia 2, and Ferrero 54. The relevant mean cluster physical parameters are derived (distances, Galactic coordinates, proper motions, radial velocities). We also measure accurate mean radial velocities for the GCs VVV-CL160 and Patchick 126 using observations acquired at the Gemini-South telescope with the Immersion GRating INfrared Spectrometer (IGRINS) high-resolution spectrograph. Orbits for each cluster are then computed using the GravPot16 model, assuming typical Galactic bar pattern speeds. Results. We reconstruct the orbits for these 11 star clusters for the first time. These include star clusters with retrograde and prograde orbital motions, both in the Galactic bulge and disk. We obtain orbital properties for this sample, such as the mean time-variations of perigalactic and apogalactic distances, eccentricities, vertical excursions from the Galactic plane, and Z -components of the angular momentum. Conclusions. Our main conclusion is that, based on the orbital parameters, Patchick 125 and Patchick 126 are genuine MW bulge or halo GCs; and Ferrero 54, Gaia 2, and Patchick 122 are MW disk GCs. In contrast, the orbits of Kronberger 99, Kronberger 119, Kronberger 143, ESO 92-18, and ESO 93-08 are more consistent with old MW disk open clusters, in agreement with previous results. VVV-CL160 falls very close to the Galactic centre, but reaches larger distances beyond the Solar orbit, and therefore its origin is still unclear.more » « less
-
Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 <z< 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving powerR≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.more » « less
-
Abstract We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyαemitting galaxies between 1.88 <z< 3.52, in a 540 deg2area encompassing a comoving volume of 10.9 Gpc3. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.more » « less