The evolution of star-forming galaxies at high redshifts is very sensitive to the strength and nature of stellar feedback. Using two sets of cosmological, zoom-in simulations from the VELA suite, we compare the effects of two different models of feedback: with and without kinetic feedback from the expansion of supernovae shells and stellar winds. At a fixed halo mass and redshift, the stellar mass is reduced by a factor of ∼1–3 in the models with stronger feedback, so the stellar mass–halo mass relation is in better agreement with abundance matching results. On the other hand, the three-dimensional shape of low-mass galaxies is elongated along a major axis in both models. At a fixed stellar mass, M* < 1010 M⊙, galaxies are more elongated in the strong-feedback case. More massive, star-forming discs with high surface densities form giant clumps. However, the population of round, compact, old (agec > 300 Myr), quenched, stellar (or gas-poor) clumps is absent in the model with strong feedback. On the other hand, giant star-forming clumps with intermediate ages (agec = 100–300 Myr) can survive for several disc dynamical times, independently of feedback strength. The evolution through compaction followed by quenching in the plane of central surface density and specificmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT