skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, Xueyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The thermochemical stability of lanthanum strontium cobalt ferrite (LSCF) processed between 1000 °C–1200 °C via the in situ carbon templating method was studied. This method generates high surface area ceramics at traditional solid oxide fuel cell (SOFC) sintering temperatures by generating a carbon template in situ and subsequently removing the template by oxidation at 700 °C. Argon processed samples produced an amorphous carbon template, whereas nitrogen tended to form graphitic carbon. Prior to the oxidation step, nitrogen samples comprised larger La 2 O 3 crystallites (22–40 nm) compared to argon (9–17 nm). Upon oxidation, argon samples resulted in a pure LSCF phase with surface areas in the 21–29 m 2 ·g −1 range, whereas nitrogen samples contained significant impurities. This demonstrates that the size of La 2 O 3 crystallites formed during inert processing limited the ability to produce a pure LSCF phase. Symmetrical cells comprising nano-LSCF electrodes generated by the templating method were compared to cells sintered directly in air. Impedance results suggest that nano-LSCF cells and cells processed in air were dominated by interfacial charge transfer resistance and gas diffusion, respectively. The results map out conditions for preparing and integrating high surface area, nanostructured LSCF into SOFC electrodes at traditional sintering temperatures. Strategies for improving the interfacial resistance of nano-LSCF electrodes are discussed. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)