Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Group IV alloy nanocrystals (NCs) are a class of direct energy gap semiconductors that show high elemental abundance, low to non-toxicity, and composition-tunable absorption and emission properties. These properties have distinguished Ge1-xSnx NCs as an intriguing material for near-infrared (IR) optical studies. Achieving a material with efficient visible emission requires a modified class of Group IV alloys and the computational studies suggest that this can be achieved with Ge1-x-ySiySnx NCs. Herein, we report a colloidal strategy for the synthesis of bulk-like (10.3 ± 2.5 – 25.5 ± 5.3 nm) and quantum-confined (3.2 ± 0.6 – 4.2 ± 1.1 nm) Ge1-x-ySiySnx alloys that show strong size confinement effects and composition-tunable visible to near IR absorption and emission properties. This synthesis produces a homogeneous alloy with diamond cubic Ge structure and tunable Si (0.9 – 16.1%) and Sn (1.8 – 14.9%) compositions, exceeding the equilibrium solubility of Sn (<1%) in crystalline Si and Ge. Raman spectra of Ge1-x-ySiySnx alloys show a prominent redshift of the Ge-Ge peak and the emergence of a Ge-Si peak with increasing Si/Sn, suggesting the growth of homogeneous alloys. The smaller Ge1-x-ySiySnx NCs exhibit absorption onsets from 1.21 to 1.94 eV for x = 1.8 – 6.8% and y = 0.9 – 16.1% compositions, which are blueshifted from those reported for Ge1-x-ySiySnx bulk alloy films and Ge1-xSnx alloy NCs, indicating the influence of Si incorporation and strong size confinement effects. Solid-state photoluminescence (PL) spectra reveal core-related PL maxima from 1.77 – 1.97 eV in agreement with absorption onsets, consistent with the energy gaps calculated for ~3–4 nm alloy NCs. With facile low-temperature solution synthesis and direct control over physical properties, this methodology presents a noteworthy advancement in the synthesis of bulk-like and quantum-confined Ge1-x-ySiySnx alloys as versatile materials for future optical and electronic studies.more » « lessFree, publicly-accessible full text available November 14, 2024
-
Metal–semiconductor hybrid nanomaterials (HNMs) exhibit unique properties that are distinct from individual nanostructures, leading to promising applications in optical technologies. The interfacial linkage of semiconductor and metal nanoparticles (NPs) via cogelation is an effective strategy to produce HNMs that show strong plasmon‐exciton coupling and improved physical properties. However, optical properties of these hybrids show little to no tunability. Herein, CdSe/Ag hybrid aerogels that show tunable absorption and photoluminescence (PL) are produced by cogelation of CdSe nanorods (NRs) or NPs with Ag hollow NPs. Hybrid electronic states are created by overlapping the excitonic absorption of CdSe NRs or NPs with the plasmonic absorption of Ag NPs. Physical characterization of the hybrids reveals an interconnected network of hexagonal CdSe and cubic Ag NPs, linked by Ag+and Se2−surface species, without intervening ligands. PL spectra exhibit maxima at 640 and 720 nm for the CdSe NPs/Ag and CdSe NRs/Ag hybrids, respectively, corresponding to new radiative decay mechanisms. Time‐resolved PL data support the emergence of new radiative pathways, kinetically and energetically distinct from the excitonic and plasmonic properties of primary NPs. This new approach of metal–semiconductor hybrid formation through cogelation is intriguing for the design of high‐efficiency HNMs without detrimental PL quenching.