skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spillner, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An equidistant X-cactus is a type of rooted, arc-weighted, directed acyclic graph with leaf set X, that is used in biology to represent the evolutionary history of a set X of species. In this paper, we introduce and investigate the space of equidistant X-cactuses. This space contains, as a subset, the space of ultrametric trees on X that was introduced by Gavryushkin and Drummond. We show that equidistant-cactus space is a CAT(0)-metric space which implies, for example, that there are unique geodesic paths between points. As a key step to proving this, we present a combinatorial result concerning ranked rooted X-cactuses. In particular, we show that such graphs can be encoded in terms of a pairwise compatibility condition arising from a poset of collections of pairs of sub- sets of X that satisfy certain set-theoretic properties. As a corollary, we also obtain an encoding of ranked, rooted X-trees in terms of partitions of X, which provides an alternative proof that the space of ultrametric trees on X is CAT(0). We expect that our results will provide the basis for novel ways to perform statistical analyses on collections of equidistant X-cactuses, as well as new directions for defining and understanding spaces of more general, arc-weighted phylogenetic networks. 
    more » « less