skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sridhar, Dhanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Statistical methods applied to social media posts shed light on the dynamics of online dialogue. For example, users' wording choices predict their persuasiveness and users adopt the language patterns of other dialogue participants. In this paper, we estimate the causal effect of reply tones in debates on linguistic and sentiment changes in subsequent responses. The challenge for this estimation is that a reply's tone and subsequent responses are confounded by the users' ideologies on the debate topic and their emotions. To overcome this challenge, we learn representations of ideology using generative models of text. We study debates from 4Forums.com and compare annotated tones of replying such as emotional versus factual, or reasonable versus attacking. We show that our latent confounder representation reduces bias in ATE estimation. Our results suggest that factual and asserting tones affect dialogue and provide a methodology for estimating causal effects from text. 
    more » « less
  2. Complex causal networks underlie many real-world problems, from the regulatory interactions between genes to the environmental patterns used to understand climate change. Computational methods seek to infer these causal networks using observational data and domain knowledge. In this paper, we identify three key requirements for inferring the structure of causal networks for scientific discovery: (1) robustness to noise in observed measurements; (2) scalability to handle hundreds of variables; and (3) flexibility to encode domain knowledge and other structural constraints. We first formalize the problem of joint probabilistic causal structure discovery.  We develop an approach using probabilistic soft logic (PSL) that exploits multiple statistical tests, supports efficient optimization over hundreds of variables, and can easily incorporate structural constraints, including imperfect domain knowledge. We compare our method against multiple well-studied approaches on biological and synthetic datasets, showing improvements of up to 20% in F1-score over the best performing baseline in realistic settings. 
    more » « less