skip to main content

Search for: All records

Creators/Authors contains: "Srivastava, Avi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kendziorski, Christina (Ed.)
    Abstract Motivation Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the limitation that cell-type-specific (CTS), spatial-, or time-dependent AI signals may be dampened or not detected. Results We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing (scRNA-seq) data, or other spatially- or time-resolved datasets. airpart outputs discrete partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their AI and had lower RMSE of allelic ratio estimates than existing methods. In real data, airpart identified DAI patterns across cell states and could be used to define trends of AI signal over spatial or time axes. Availability The airpart package is available as an R/Bioconductor package at 
    more » « less
  2. Li, Min (Ed.)
    Experimental single-cell approaches are becoming widely used for many purposes, including investigation of the dynamic behaviour of developing biological systems. Consequently, a large number of computational methods for extracting dynamic information from such data have been developed. One example is RNA velocity analysis, in which spliced and unspliced RNA abundances are jointly modeled in order to infer a ‘direction of change’ and thereby a future state for each cell in the gene expression space. Naturally, the accuracy and interpretability of the inferred RNA velocities depend crucially on the correctness of the estimated abundances. Here, we systematically compare five widely used quantification tools, in total yielding thirteen different quantification approaches, in terms of their estimates of spliced and unspliced RNA abundances in five experimental droplet scRNA-seq data sets. We show that there are substantial differences between the quantifications obtained from different tools, and identify typical genes for which such discrepancies are observed. We further show that these abundance differences propagate to the downstream analysis, and can have a large effect on estimated velocities as well as the biological interpretation. Our results highlight that abundance quantification is a crucial aspect of the RNA velocity analysis workflow, and that both the definition of the genomic features of interest and the quantification algorithm itself require careful consideration. 
    more » « less
  3. Birol, Inanc (Ed.)
    Abstract Motivation Quantification estimates of gene expression from single-cell RNA-seq (scRNA-seq) data have inherent uncertainty due to reads that map to multiple genes. Many existing scRNA-seq quantification pipelines ignore multi-mapping reads and therefore underestimate expected read counts for many genes. alevin accounts for multi-mapping reads and allows for the generation of ‘inferential replicates’, which reflect quantification uncertainty. Previous methods have shown improved performance when incorporating these replicates into statistical analyses, but storage and use of these replicates increases computation time and memory requirements. Results We demonstrate that storing only the mean and variance from a set of inferential replicates (‘compression’) is sufficient to capture gene-level quantification uncertainty, while reducing disk storage to as low as 9% of original storage, and memory usage when loading data to as low as 6%. Using these values, we generate ‘pseudo-inferential’ replicates from a negative binomial distribution and propose a general procedure for incorporating these replicates into a proposed statistical testing framework. When applying this procedure to trajectory-based differential expression analyses, we show false positives are reduced by more than a third for genes with high levels of quantification uncertainty. We additionally extend the Swish method to incorporate pseudo-inferential replicates and demonstrate improvements in computation time and memory usage without any loss in performance. Lastly, we show that discarding multi-mapping reads can result in significant underestimation of counts for functionally important genes in a real dataset. Availability and implementation makeInfReps and splitSwish are implemented in the R/Bioconductor fishpond package available at Analyses and simulated datasets can be found in the paper’s GitHub repo at Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Abstract Motivation Droplet-based single-cell RNA-seq (dscRNA-seq) data are being generated at an unprecedented pace, and the accurate estimation of gene-level abundances for each cell is a crucial first step in most dscRNA-seq analyses. When pre-processing the raw dscRNA-seq data to generate a count matrix, care must be taken to account for the potentially large number of multi-mapping locations per read. The sparsity of dscRNA-seq data, and the strong 3’ sampling bias, makes it difficult to disambiguate cases where there is no uniquely mapping read to any of the candidate target genes. Results We introduce a Bayesian framework for information sharing across cells within a sample, or across multiple modalities of data using the same sample, to improve gene quantification estimates for dscRNA-seq data. We use an anchor-based approach to connect cells with similar gene-expression patterns, and learn informative, empirical priors which we provide to alevin’s gene multi-mapping resolution algorithm. This improves the quantification estimates for genes with no uniquely mapping reads (i.e. when there is no unique intra-cellular information). We show our new model improves the per cell gene-level estimates and provides a principled framework for information sharing across multiple modalities. We test our method on a combination of simulated and real datasets under various setups. Availability and implementation The information sharing model is included in alevin and is implemented in C++14. It is available as open-source software, under GPL v3, at as of version 1.1.0. 
    more » « less
  5. null (Ed.)
    Abstract Background The accuracy of transcript quantification using RNA-seq data depends on many factors, such as the choice of alignment or mapping method and the quantification model being adopted. While the choice of quantification model has been shown to be important, considerably less attention has been given to comparing the effect of various read alignment approaches on quantification accuracy. Results We investigate the influence of mapping and alignment on the accuracy of transcript quantification in both simulated and experimental data, as well as the effect on subsequent differential expression analysis. We observe that, even when the quantification model itself is held fixed, the effect of choosing a different alignment methodology, or aligning reads using different parameters, on quantification estimates can sometimes be large and can affect downstream differential expression analyses as well. These effects can go unnoticed when assessment is focused too heavily on simulated data, where the alignment task is often simpler than in experimentally acquired samples. We also introduce a new alignment methodology, called selective alignment, to overcome the shortcomings of lightweight approaches without incurring the computational cost of traditional alignment. Conclusion We observe that, on experimental datasets, the performance of lightweight mapping and alignment-based approaches varies significantly, and highlight some of the underlying factors. We show this variation both in terms of quantification and downstream differential expression analysis. In all comparisons, we also show the improved performance of our proposed selective alignment method and suggest best practices for performing RNA-seq quantification. 
    more » « less
  6. Abstract Motivation Advances in sequencing technology, inference algorithms and differential testing methodology have enabled transcript-level analysis of RNA-seq data. Yet, the inherent inferential uncertainty in transcript-level abundance estimation, even among the most accurate approaches, means that robust transcript-level analysis often remains a challenge. Conversely, gene-level analysis remains a common and robust approach for understanding RNA-seq data, but it coarsens the resulting analysis to the level of genes, even if the data strongly support specific transcript-level effects. Results We introduce a new data-driven approach for grouping together transcripts in an experiment based on their inferential uncertainty. Transcripts that share large numbers of ambiguously-mapping fragments with other transcripts, in complex patterns, often cannot have their abundances confidently estimated. Yet, the total transcriptional output of that group of transcripts will have greatly reduced inferential uncertainty, thus allowing more robust and confident downstream analysis. Our approach, implemented in the tool terminus, groups together transcripts in a data-driven manner allowing transcript-level analysis where it can be confidently supported, and deriving transcriptional groups where the inferential uncertainty is too high to support a transcript-level result. Availability and implementation Terminus is implemented in Rust, and is freely available and open source. It can be obtained from Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  7. Abstract Summary

    With the advancements of high-throughput single-cell RNA-sequencing protocols, there has been a rapid increase in the tools available to perform an array of analyses on the gene expression data that results from such studies. For example, there exist methods for pseudo-time series analysis, differential cell usage, cell-type detection RNA-velocity in single cells, etc. Most analysis pipelines validate their results using known marker genes (which are not widely available for all types of analysis) and by using simulated data from gene-count-level simulators. Typically, the impact of using different read-alignment or unique molecular identifier (UMI) deduplication methods has not been widely explored. Assessments based on simulation tend to start at the level of assuming a simulated count matrix, ignoring the effect that different approaches for resolving UMI counts from the raw read data may produce. Here, we present minnow, a comprehensive sequence-level droplet-based single-cell RNA-sequencing (dscRNA-seq) experiment simulation framework. Minnow accounts for important sequence-level characteristics of experimental scRNA-seq datasets and models effects such as polymerase chain reaction amplification, cellular barcodes (CB) and UMI selection and sequence fragmentation and sequencing. It also closely matches the gene-level ambiguity characteristics that are observed in real scRNA-seq experiments. Using minnow, we explore the performance of some common processing pipelines to produce gene-by-cell count matrices from droplet-bases scRNA-seq data, demonstrate the effect that realistic levels of gene-level sequence ambiguity can have on accurate quantification and show a typical use-case of minnow in assessing the output generated by different quantification pipelines on the simulated experiment.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    more » « less
  8. Abstract A primary challenge in the analysis of RNA-seq data is to identify differentially expressed genes or transcripts while controlling for technical biases. Ideally, a statistical testing procedure should incorporate the inherent uncertainty of the abundance estimates arising from the quantification step. Most popular methods for RNA-seq differential expression analysis fit a parametric model to the counts for each gene or transcript, and a subset of methods can incorporate uncertainty. Previous work has shown that nonparametric models for RNA-seq differential expression may have better control of the false discovery rate, and adapt well to new data types without requiring reformulation of a parametric model. Existing nonparametric models do not take into account inferential uncertainty, leading to an inflated false discovery rate, in particular at the transcript level. We propose a nonparametric model for differential expression analysis using inferential replicate counts, extending the existing SAMseq method to account for inferential uncertainty. We compare our method, Swish, with popular differential expression analysis methods. Swish has improved control of the false discovery rate, in particular for transcripts with high inferential uncertainty. We apply Swish to a single-cell RNA-seq dataset, assessing differential expression between sub-populations of cells, and compare its performance to the Wilcoxon test. 
    more » « less