skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stafford, Kathleen_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundClimate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea. MethodsWe used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas. ResultsFall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82). ConclusionsAs sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence. 
    more » « less
  2. Abstract In a rapidly changing Arctic, multiple lines of evidence suggest that bowhead whale migration is changing. To explore these changes further, we used passive acoustic data to examine bowhead whale presence in the western Beaufort Sea (12 years) and Chukchi Plateau (11 years) spanning 2008 to 2022. Departure from the western Beaufort Sea shifted 45 days later over the 12‐year period. Summer presence increased at both sites, suggesting feeding areas within the Chukchi Sea are becoming more favorable. Likewise, findings from the Bering Strait suggest that some whales are remaining north of the Bering Strait for the winter instead of in the Bering Sea. These Pacific Arctic‐wide changes to migration have occurred over only one decade. Questions remain about prey availability in the Chukchi Sea, implications of migratory changes, such as a northward shift in the core overwintering area, and impact to communities south of the Bering Strait. 
    more » « less
  3. Abstract Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW;Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution. 
    more » « less