skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stanimirovic, Snezana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present 0.6–3.2 pc resolution mid-infrared (MIR) JWST images at 7.7μm (F770W) and 21μm (F2100W) covering the main star-forming regions of two of the closest star-forming low-metallicity dwarf galaxies, NGC 6822 and Wolf–Lundmark–Melotte (WLM). The images of NGC 6822 reveal filaments, edge-brightened bubbles, diffuse emission, and a plethora of point sources. By contrast, most of the MIR emission in WLM is pointlike, with a small amount of extended emission. Compared to solar-metallicity galaxies, the ratio of 7.7μm intensity ( I ν F770W ), tracing polycyclic aromatic hydrocarbons (PAHs), to 21μm intensity ( I ν F2100W ), tracing small, warm dust grain emission, is suppressed in these low-metallicity dwarfs. Using Atacama Large Millimeter/submillimeter Array CO(2–1) observations, we find that detected CO intensity versus I ν F770W at ≈2 pc resolution in dwarfs follows a similar relationship to that at solar metallicity and lower resolution, while the CO versus I ν F2100W relationship in dwarfs lies significantly below that derived from solar-metallicity galaxies at lower resolution, suggesting more pronounced destruction of CO molecules at low metallicity. Finally, adding in Local Group L-Band Survey 21 cm Hiobservations from the Very Large Array, we find that I ν F2100W and I ν F770W versus total gas ratios are suppressed in NGC 6822 and WLM compared to solar-metallicity galaxies. In agreement with dust models, the level of suppression appears to be at least partly accounted for by the reduced galaxy-averaged dust-to-gas and PAH-to-dust mass ratios in the dwarfs. Remaining differences are likely due to spatial variations in dust model parameters, which should be an exciting direction for future work in local dwarf galaxies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. The three-dimensional distribution of neutral hydrogen in the Milky Way disk is a key constraint on models of Galactic spiral structure, galaxy evolution, and star formation. In particular, the vertical distributions of the different phases of hydrogen (ionized, warm neutral, cold neutral, and molecular) inform our understanding of the evolution of gas between these phases. Although the scale height of the HI emission disk has been well-characterized across the Galaxy, the vertical distribution of the cold HI component is significantly more challenging to constrain due to the sensitive absorption observations required to characterize this phase. Almost four decades ago, Crovisier (1987) pioneered a kinematic method to estimate the vertical distribution of cold HI clouds in the solar neighborhood using the latest results from the Nancay 21-cm absorption survey. This method was subsequently used in other studies to constrain the vertical distribution of neutral and molecular clouds. We have discovered an error in Crovisier's method that can lead to a factor of two inaccuracy in the inferred scale height. We will discuss the mistake and, using the original Nancay data and a corrected method based on Crovisier's technique, demonstrate the magnitude of the error in the inferred scale height of the local cold HI disk. Furthermore, we will introduce a new Monte Carlo Markov Chain method to infer the vertical distribution of HI absorbing clouds with fewer assumptions and better accuracy. This method will be used with the latest HI absorption data from the Galactic ASKAP HI survey of the Milky Way disk to provide an unprecedented view of the 3D distribution of the cold neutral medium in the solar neighborhood. 
    more » « less