skip to main content

Search for: All records

Creators/Authors contains: "Stein, Oded"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although shape correspondence is a central problem in geometry processing, most methods for this task apply only to two-dimensional surfaces. The neglected task ofvolumetriccorrespondence—a natural extension relevant to shapes extracted from simulation, medical imaging, and volume rendering—presents unique challenges that do not appear in the two-dimensional case. In this work, we propose a method for mapping between volumes represented as tetrahedral meshes. Our formulation minimizes a distortion energy designed to extract maps symmetrically, i.e., without dependence on the ordering of the source and target domains. We accompany our method with theoretical discussion describing the consequences of this symmetry assumption, leading us to select a symmetrized ARAP energy that favors isometric correspondences. Our final formulation optimizes for near-isometry while matching the boundary. We demonstrate our method on a diverse geometric dataset, producing low-distortion matchings that align closely to the boundary.

    more » « less
  2. We introduce a robust optimization method for flip-free distortion energies used, for example, in parametrization, deformation, and volume correspondence. This method can minimize a variety of distortion energies, such as the symmetric Dirichlet energy and our new symmetric gradient energy. We identify and exploit the special structure of distortion energies to employ an operator splitting technique, leading us to propose a novel alternating direction method of multipliers (ADMM) algorithm to deal with the nonconvex, nonsmooth nature of distortion energies. The scheme results in an efficient method where the global step involves a single matrix multiplication and the local steps are closed-form per-triangle/per-tetrahedron expressions that are highly parallelizable. The resulting general-purpose optimization algorithm exhibits robustness to flipped triangles and tetrahedra in initial data as well as during the optimization. We establish the convergence of our proposed algorithm under certain conditions and demonstrate applications to parametrization, deformation, and volume correspondence. 
    more » « less
  3. null (Ed.)
  4. Abstract

    We present a simple and concise discretization of the covariant derivative vector Dirichlet energy for triangle meshes in 3D using Crouzeix‐Raviart finite elements. The discretization is based on linear discontinuous Galerkin elements, and is simple to implement, without compromising on quality: there are two degrees of freedom for each mesh edge, and the sparse Dirichlet energy matrix can be constructed in a single pass over all triangles using a short formula that only depends on the edge lengths, reminiscent of the scalar cotangent Laplacian. Our vector Dirichlet energy discretization can be used in a variety of applications, such as the calculation of Killing fields, parallel transport of vectors, and smooth vector field design. Experiments suggest convergence and suitability for applications similar to other discretizations of the vector Dirichlet energy.

    more » « less
  5. Developable surfaces are those that can be made by smoothly bending flat pieces without stretching or shearing. We introduce a definition of developability for triangle meshes which exactly captures two key properties of smooth developable surfaces, namely flattenability and presence of straight ruling lines. This definition provides a starting point for algorithms in developable surface modeling—we consider a variational approach that drives a given mesh toward developable pieces separated by regular seam curves. Computation amounts to gradient descent on an energy with support in the vertex star, without the need to explicitly cluster patches or identify seams. We briefly explore applications to developable design and manufacturing. 
    more » « less
  6. We propose using a different smoothness energy, the Hessian energy, whose natural boundary conditions avoid this bias.In geometry processing, smoothness energies are commonly used to model scattered data interpolation, dense data denoising, and regularization during shape optimization. The squared Laplacian energy is a popular choice of energy and has a corresponding standard implementation: squaring the discrete Laplacian matrix. For compact domains, when values along the boundary are not known in advance, this construction bakes in low-order boundary conditions. This causes the geometric shape of the boundary to strongly bias the solution. For many applications, this is undesirable.Instead, we propose using the squared Frobenius norm of the Hessian as a smoothness energy. Unlike the squared Laplacian energy, this energy’s natural boundary conditions(those that best minimize the energy) correspond to meaningful high-order boundary conditions. These boundary conditions model free boundaries where the shape of the boundary should not bias the solution locally. Our analysis begins in the smooth setting and concludes with discretizations using finite-differences on 2D grids or mixed fnite elements for triangle meshes. We demonstrate the core behavior of the squared Hessian as a smoothness energy for various tasks. 
    more » « less