Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R–O–CH3) in wood. Most methoxyl C–H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue13CH2D correlates with temperature (18–28 °C) and atmospheric [CO2] (280–1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.more » « less
-
Summary Plant carbon isotope discrimination is complex, and could be driven by climate, evolution and/or edaphic factors. We tested the climate drivers of carbon isotope discrimination in modern and historical plant chemistry, and focus in particular on the relationship between rising [CO2] over Industrialization and carbon isotope discrimination.We generated temporal records of plant carbon isotopes from museum specimens collected over a climo‐sequence to test plant responses to climate and atmospheric change over the past 200 yr (includingPinus strobus,Platycladus orientalis,Populus tremuloides,Thuja koraiensis,Thuja occidentalis,Thuja plicata,Thuja standishiiandThuja sutchuenensis). We aggregated our results with a meta‐analysis of a wide range of C3plants to make a comprehensive study of the distribution of carbon isotope discrimination and values among different plant types.We show that climate variables (e.g. mean annual precipitation, temperature and, key to this study, CO2in the atmosphere) do not drive carbon isotope discrimination.Plant isotope discrimination is intrinsic to each taxon, and could link phylogenetic relationships and adaptation to climate quantitatively and over ecological to geological time scales.more » « less
An official website of the United States government
