Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We make an in-depth analysis of different active galactic nuclei (AGN) jet models’ signatures, inducing quiescence in galaxies with a halo mass of 1012M⊙. Three jet models, including cosmic-ray-dominant, hot thermal, and precessing kinetic jets, are studied at two energy flux levels each, compared to a jet-free, stellar feedback-only simulation. Each of our simulations is idealized isolated galaxy simulations with AGN jet powers that are constant in time and generated using GIZMO and with FIRE stellar feedback. We examine the distribution of Mgii, Ovi, and Oviiiions, alongside gas temperature and density profiles. Low-energy ions, like Mgii, concentrate in the interstellar medium (ISM), while higher energy ions, e.g., Oviii, prevail at the AGN jet cocoon’s edge. High-energy flux jets display an isotropic ion distribution with lower overall density. High-energy thermal or cosmic-ray jets pressurize at smaller radii, significantly suppressing core density. The cosmic-ray jet provides extra pressure support, extending cool and warm gas distribution. A break in the ion-to-mass ratio slope in Oviand Oviiiis demonstrated in the ISM-to-circumgalactic medium (CGM) transition (between 10 and 30 kpc), growing smoothly toward the CGM at greater distances.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates.more » « less
-
Abstract We present an in-depth analysis of the newly proposed correlation function in visibility space, between the E and B modes of linear polarization, hereafter the EB correlation, for a set of time-averaged general relativistic magnetohydrodynamical simulations compared with the phase map from different semianalytic models and the Event Horizon Telescope (EHT) 2017 data for M87*. We demonstrate that the phase map of time-averaged EB correlation contains novel information that might be linked to black hole (BH) spin, accretion state, and electron temperature. A detailed comparison with a semianalytic approach with different azimuthal expansion modes shows that to recover the morphology of real/imaginary part of the correlation function and its phase, we require higher orders of azimuthal modes. To extract the phase features, we use Zernike polynomial reconstruction developing an empirical metric to break degeneracies between models with different BH spins that are qualitatively similar. We use a set of geometrical ring models with various magnetic and velocity field morphologies, showing that both the image space and visibility-based EB -correlation morphologies in magnetically arrested disk simulations can be explained with simple fluid and magnetic field geometries as used in ring models. Standard and normal evolutions by contrast are harder to model, demonstrating that the simple fluid and magnetic field geometries of ring models are not sufficient to describe them owing to higher Faraday rotation depths. A qualitative comparison with the EHT data demonstrates that some of the features in the phase of EB correlation might be well explained by the current models for BH spins and electron temperatures, while others require larger theoretical surveys.more » « less
-
Abstract We investigate general relativistic magnetohydrodynamic simulations to determine the physical origin of the twisty patterns of linear polarization seen in spatially resolved black hole images and explain their morphological dependence on black hole spin. By characterizing the observed emission with a simple analytic ring model, we find that the twisty morphology is determined by the magnetic field structure in the emitting region. Moreover, the dependence of this twisty pattern on spin can be attributed to changes in the magnetic field geometry that occur due to the frame dragging. By studying an analytic ring model, we find that the roles of Doppler boosting and lensing are subdominant. Faraday rotation may cause a systematic shift in the linear polarization pattern, but we find that its impact is subdominant for models with strong magnetic fields and modest ion-to-electron temperature ratios. Models with weaker magnetic fields are much more strongly affected by Faraday rotation and have more complicated emission geometries than can be captured by a ring model. However, these models are currently disfavoured by the recent EHT observations of M87*. Our results suggest that linear polarization maps can provide a probe of the underlying magnetic field structure around a black hole, which may then be usable to indirectly infer black hole spins. The generality of these results should be tested with alternative codes, initial conditions, and plasma physics prescriptions.more » « less
-
Abstract Neutron Star Interior Composition Explorer has a comparatively low background rate, but it is highly variable, and its spectrum must be predicted using measurements unaffected by the science target. We describe an empirical, three-parameter model based on observations of seven pointing directions that are void of detectable sources. Two model parameters track different types of background events, while the third is used to predict a low-energy excess tied to observations conducted in sunlight. An examination of 3556 good time intervals (GTIs), averaging 570 s, yields a median rate (0.4–12 keV; 50 detectors) of 0.87 c s −1 , but in 5% (1%) of cases, the rate exceeds 10 (300) c s −1 . Model residuals persist at 20%–30% of the initial rate for the brightest GTIs, implying one or more missing model parameters. Filtering criteria are given to flag GTIs likely to have unsatisfactory background predictions. With such filtering, we estimate a detection limit, 1.20 c s −1 (3 σ , single GTI) at 0.4–12 keV, equivalent to 3.6 × 10 −12 erg cm −2 s −1 for a Crab-like spectrum. The corresponding limit for soft X-ray sources is 0.51 c s −1 at 0.3–2.0 keV, or 4.3 × 10 −13 erg cm −2 s −1 for a 100 eV blackbody. These limits would be four times lower if exploratory GTIs accumulate 10 ks of data after filtering at the level prescribed for faint sources. Such filtering selects background GTIs 85% of the time. An application of the model to a 1 s timescale makes it possible to distinguish source flares from possible surges in the background.more » « less
-
Abstract How astrophysical systems translate the kinetic energy of bulk motion into the acceleration of particles to very high energies is a pressing question. SS 433 is a microquasar that emits TeVγ-rays indicating the presence of high-energy particles. A region of hard X-ray emission in the eastern lobe of SS 433 was recently identified as an acceleration site. We observed this region with the Imaging X-ray Polarimetry Explorer and measured a polarization degree in the range 38%–77%. The high polarization degree indicates the magnetic field has a well-ordered component if the X-rays are due to synchrotron emission. The polarization angle is in the range −12° to +10° (east of north), which indicates that the magnetic field is parallel to the jet. Magnetic fields parallel to the bulk flow have also been found in supernova remnants and the jets of powerful radio galaxies. This may be caused by interaction of the flow with the ambient medium.more » « less