skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stidd, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a network of mining pools that secure Bitcoin-like blockchains, it is known that a self-interested mining pool can dishonestly siphon off another pool’s mining rewards by executing a block withholding (BWH) attack. In this paper, we show that a BWH attack is always unprofitable for an initial startup period which is at least one difficulty retarget interval (approximately 14 days for Bitcoin). Furthermore, we prove that the payback period to recoup this initial startup cost is always at least as long as the initial unprofitable startup interval, and we show numerically that it can be substantially longer. Thus, the decision of whether or not to execute a BWH attack is not a dominant strategy, and the so called Miner’s Dilemma is not in fact a dilemma. 
    more » « less
  2. The secure functioning of automotive systems is vital to the safety of their passengers and other roadway users. One of the critical functions for safety is the controller area network (CAN), which interconnects the safety-critical electronic control units (ECUs) in the majority of ground vehicles. Unfortunately CAN is known to be vulnerable to several attacks. One such attack is the bus-off attack, which can be used to cause a victim ECU to disconnect itself from the CAN bus and, subsequently, for an attacker to masquerade as that ECU. A limitation of the bus-off attack is that it requires the attacker to achieve tight synchronization between the transmission of the victim and the attacker’s injected message. In this paper, we introduce a schedule-based attack framework for the CAN bus-off attack that uses the real-time schedule of the CAN bus to predict more attack opportunities than previously known. We describe a ranking method for an attacker to select and optimize its attack injections with respect to criteria such as attack success rate, bus perturbation, or attack latency. The results show that vulnerabilities of the CAN bus can be enhanced by schedulebased attacks. 
    more » « less