skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Stiles, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background and aims

    Palm fossils are often used as evidence for warm and wet palaeoenvironments, reflecting the affinities of most modern palms. However, several extant palm lineages tolerate cool and/or arid climates, making a clear understanding of the taxonomic composition of ancient palm communities important for reliable palaeoenvironmental inference. However, taxonomically identifiable palm fossils are rare and often confined to specific facies. Although the resolution of taxonomic information they provide remains unclear, phytoliths (microscopic silica bodies) provide a possible solution because of their high preservation potential under conditions where other plant fossils are scarce. We thus evaluate the taxonomic and palaeoenvironmental utility of palm phytoliths.

    Methods

    We quantified phytolith morphology of 97 modern palm and other monocot species. Using this dataset, we tested the ability of five common discriminant methods to identify nine major palm clades. We then compiled a dataset of species’ climate preferences and tested if they were correlated with phytolith morphology using a phylogenetic comparative approach. Finally, we reconstructed palm communities and palaeoenvironmental conditions at six fossil sites.

    Key results

    Best-performing models correctly identified phytoliths to their clade of origin only 59 % of the time. Although palms were generally distinguished from non-palms, few palm clades were highly distinct, and phytolith morphology was weakly correlated with species’ environmental preferences. Reconstructions at all fossil sites suggested that palm communities were dominated by Trachycarpeae and Areceae, with warm, equable climates and high, potentially seasonal rainfall. However, fossil site reconstructions had high uncertainty and often conflicted with other climate proxies.

    Conclusions

    While phytolith morphology provides some distinction among palm clades, caution is warranted. Unlike prior spatially restricted studies, our geographically and phylogenetically broad study indicates phytolith morphology may not reliably differentiate most palm taxa in deep time. Nevertheless, it reveals distinct clades, including some likely to be palaeoenvironmentally informative.

     
    more » « less
  2. Degree of canopy cover is linked to transpiration, carbon cycling and primary productivity of an ecosystem. In modern ecology, canopy structure is often quantified as Leaf Area Index (LAI), which is the amount of overstory leaf coverage relative to ground area. Although a key aspect of vegetation, the degree of canopy cover has proven difficult to reconstruct in deep time. One method, Reconstructed Leaf Area Index (rLAI), was developed to infer canopy structure using the relationship between non-grass leaf epidermal phytolith (plant biosilica) morphology, and leaf coverage in modern forests. This method leverages the observed correlation between epidermal phytolith size, shape (margin undulation), and light availability. When more light is available in a canopy, epidermal phytoliths tend to be smaller and less undulate, whereas less light availability is linked to larger and more undulate epidermal phytoliths. However, the calibration set used to develop this method was compiled from field sites and samples from localities in Costa Rica and it remains unclear how applicable it is to temperate North American fossil sites due to lack of data from relevant vegetation types and taxonomic differences between plant communities in the Neotropics vs. mid-latitude North America. For example, preliminary results measuring rLAI in phytolith assemblages from the Miocene of the North American Great Plains have yielded surprisingly high degrees of canopy density despite containing high relative abundances of open-habitat grasses. To test whether vegetational and taxonomic differences impact the calibration set, we constructed a new North American calibration using 24 quadrats from six sites, representing reasonable modern analogs for Miocene vegetation in eastern North America. Specifically, we sampled in Bennett Springs State Park in Lebanon, MO; Mark Twain National Forest in Rolla, MO; Tellico in Franklin, NC and Congaree National Park in Hopkins, SC. All sites include a range of canopy covers and vegetation types, from oak savannas and oak woodlands to mixed hardwood forests, pine savannas, and old growth bottomland forests. From each quadrat, we collected a soil sample and took hemispherical photos of the local canopy. From modern soil samples, biosilica was extracted in the lab, yielding phytolith assemblages which were scanned for epidermal phytoliths using a compound microscope. Recovered epidermal phytoliths size and margin undulation were measured and assemblage averages were used to predict measured LAI at each quadrat. Hemispherical photographs were processed using the software Gap Light Analyzer to obtain LAI values. We hypothesize there will be a linear relationship between actual LAI and LAI calculated from epidermal phytolith morphology, but its relationship will differ from that found in South America. Results will be used to reevaluate canopy coverage in sites within the Great Plains Miocene as well as applied to Pacific Northwest Miocene sites, both to understand changes to vegetation during global climatic events in their respective regions. 
    more » « less