skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stinson, V_Paige"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, the complex dielectric function of 2,5-bis(N,N-dibutyl-4-aminophenyl) thiazolo[5,4-d]thiazole is reported. Thin films of this material were obtained by spin coating on a silicon substrate. The samples were investigated using spectroscopic ellipsometry in the spectral range from 354 nm to 1907 nm at multiple angles of incidence. The ellipsometric data were analyzed using a stratified-layer model composed of a thiazolothiazole thin film, a native SiO2oxide, and a Si substrate. The model dielectric function of the thiazolothiazole thin film was modeled using a series of Tauc-Lorentz and Gaussian oscillators. The best-model calculated data reproduces the experimental data very well. The bandgap of TTz is reported and found to be in good agreement with density functional theory calculations reported earlier. 
    more » « less
  2. A polymer-based, one-dimensional photonic crystal exhibiting anisotropic responses was demonstrated in the terahertz frequency range. The photonic crystal was composed of alternating compact and low-density polymethacrylate layers. The low-density layers consisted of sub-wavelength sized columns, which were slanted 45° with respect to the substrate surface normal to achieve form-birefringence. Normal incidence polarized terahertz transmission measurements were carried out for characterization of the fabricated photonic crystals in the range from 82 to 125 GHz. The experimental data revealed a 2 GHz shift in the center frequency of the photonic bandgap as a function of in-plane orientation, well demonstrating the anisotropic behavior of the fabricated crystal. The transmission data were analyzed using stratified optical layer model calculations. A good agreement was found between the relevant model parameters and the corresponding design parameters. 
    more » « less