- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Duprat, C (1)
-
Stone, HA (1)
-
Wu, Katie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the capillary rise of viscous liquids into sharp corners formed by two surfaces whose geometry is described by power laws, $$h_i(x) = c_i x^n$$, $i = 1,2$, where $$c_2 > c_1$$ for $$n \geq 1$$. Prior investigations of capillary rise in sharp corners have shown that the meniscus altitude increases with time as $$t^{1/3}$$, a result which is universal, i.e., applies to all corner geometries. The universality of the phenomenon of capillary rise in sharp corners is revisited in this work through the analysis of a partial differential equation for the evolution of a liquid column rising into power-law-shaped corners, which is derived using lubrication theory. Despite the lack of geometric similarity of the liquid column cross-section for $n>1$, there exists a scaling and a similarity transformation that are independent of $$c_i$$ and $$n$$, which gives rise to the universal $$t^{1/3}$$ power-law for capillary rise. However, the prefactor, which corresponds to the tip altitude of the self-similar solution, is a function of $$n$$, and it is shown to be bounded and monotonically decreasing as $$n\to \infty$$. Accordingly, the profile of the interface radius as a function of altitude is also independent of $$c_i$$ and exhibits slight variations with $$n$$. Theoretical results are compared against experimental measurements of the time evolution of the tip altitude and of profiles of the interface radius as a function of altitude.more » « less
An official website of the United States government
