Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice.
more »
« less
Capillary rise in sharp corners: not quite universal
We study the capillary rise of viscous liquids into sharp corners formed by two surfaces whose geometry is described by power laws, $$h_i(x) = c_i x^n$$, $i = 1,2$, where $$c_2 > c_1$$ for $$n \geq 1$$. Prior investigations of capillary rise in sharp corners have shown that the meniscus altitude increases with time as $$t^{1/3}$$, a result which is universal, i.e., applies to all corner geometries. The universality of the phenomenon of capillary rise in sharp corners is revisited in this work through the analysis of a partial differential equation for the evolution of a liquid column rising into power-law-shaped corners, which is derived using lubrication theory. Despite the lack of geometric similarity of the liquid column cross-section for $n>1$, there exists a scaling and a similarity transformation that are independent of $$c_i$$ and $$n$$, which gives rise to the universal $$t^{1/3}$$ power-law for capillary rise. However, the prefactor, which corresponds to the tip altitude of the self-similar solution, is a function of $$n$$, and it is shown to be bounded and monotonically decreasing as $$n\to \infty$$. Accordingly, the profile of the interface radius as a function of altitude is also independent of $$c_i$$ and exhibits slight variations with $$n$$. Theoretical results are compared against experimental measurements of the time evolution of the tip altitude and of profiles of the interface radius as a function of altitude.
more »
« less
- Award ID(s):
- 2127563
- PAR ID:
- 10511253
- Publisher / Repository:
- Journal of Fluid Mechanics (Cambridge University Press)
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 978
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- A26-1-A26-28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sharp edge structures have been demonstrated as an efficient way of generating acoustic streaming in microfluidic devices, which finds numerous applications in fluid mixing, pumping, particle actuation, and cell lysis. A sharp tip capillary is widely available means of generating sharp structures without the need of microfabrication, which has been used for studying enzyme kinetics, droplet digital PCR, and mass spectrometry analysis. In this work, we studied the influence of liquid inside the vibrating glass capillary on its efficiency of generating acoustic streaming. Using fluorescence microscopy and fluorescent particles, we observed that adding liquid to the inside of the vibrating glass capillary changed the streaming patterns as well as led to increased streaming velocity. Based on the observed streaming patterns, we hypothesized the liquid present in the capillary changed vibration mode of the capillary, which is matched with COMSOL simulations. Finally, the utility of the liquid filled vibrating capillary was demonstrated for higher energy efficiency for fluid mixing and mass spectrometry experiments. This study will provide useful guidance when optimizing the efficiency of vibrating sharp tip capillary systems.more » « less
-
Kumar, Amit; Ron-Zewi, Noga (Ed.){"Abstract":["The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the "threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function inversion.\r\nIn this work, we present resolutions to some of these questions with respect to the black-box analog of these problems. In more detail, let MK^t_M P[s] denote the language consisting of strings x with K_{M}^t(x) < s(|x|), where K_M^t(x) denotes the t-bounded Kolmogorov complexity of x with M as the underlying (Universal) Turing machine, and let search-MK^t_M P[s] denote the search version of the same problem.\r\nWe show that if for every Universal Turing machine U there exists a 2^{α n}poly(n)-size U-oracle aided circuit deciding MK^t_U P[n-O(1)], then for every function s, and every not necessarily universal Turing machine M, there exists a 2^{α s(n)}poly(n)-size M-oracle aided circuit solving search-MK^t_M P[s(n)]; this in turn yields circuits of roughly the same size for both the Minimum Circuit Size Problem (MCSP), and the function inversion problem, as they can be thought of as instantiating MK^t_M P with particular choices of (a non-universal) TMs M (the circuit emulator for the case of MCSP, and the function evaluation in the case of function inversion).\r\nAs a corollary of independent interest, we get that the complexity of black-box function inversion is (roughly) the same as the complexity of black-box deciding MK^t_U P[n-O(1)] for any universal TM U; that is, also in the worst-case regime, black-box function inversion is "equivalent" to black-box deciding MK^t_U P."]}more » « less
-
Abstarct Given disjoint subsets T 1 , …, T m of “not too large” primes up to x , we establish that for a random integer n drawn from [1, x ], the m -dimensional vector enumerating the number of prime factors of n from T 1 , …, T m converges to a vector of m independent Poisson random variables. We give a specific rate of convergence using the Kubilius model of prime factors. We also show a universal upper bound of Poisson type when T 1 , …, T m are unrestricted, and apply this to the distribution of the number of prime factors from a set T conditional on n having k total prime factors.more » « less
-
Young massive stars warm up the large amount of gas and dust that condenses in their vicinity, exciting a forest of lines from different molecular species. Their line brightness is a diagnostic tool of the gas’s physical conditions locally, which we use to set constraints on the environment where massive stars form. We made use of the Atacama Large Millimeter/submillimeter Array at frequencies near 349 GHz, with an angular resolution of 0′′.1, to observe the methyl cyanide (CH 3 CN) emission which arises from the accretion disk of a young massive star. We sample the disk midplane with twelve distinct beams, where we get an independent measure of the gas’s (and dust’s) physical conditions. The accretion disk extends above the midplane, showing a double-armed spiral morphology projected onto the plane of the sky, which we sample with ten additional beams: Along these apparent spiral features, gas undergoes velocity gradients of about 1 km s −1 per 2000 au. The gas temperature ( T ) rises symmetrically along each side of the disk, from about 98 K at 3000 au to 289 K at 250 au, following a power law with radius R −0.43 . The CH 3 CN column density ( N ) increases from 9.2 × 10 15 cm −2 to 8.7 × 10 17 cm −2 at the same radii, following a power law with radius R −1.8 . In the framework of a circular gaseous disk observed approximately edge-on, we infer an H 2 volume density in excess of 4.8 ×10 9 cm −3 at a distance of 250 au from the star. We study the disk stability against fragmentation following the methodology by Kratter et al. (2010, ApJ, 708, 1585), which is appropriate under rapid accretion, and we show that the disk is marginally prone to fragmentation along its whole extent.more » « less
An official website of the United States government

