skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Styliaris, Georgios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here, we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPSs) and projected entangled-pair states (PEPSs) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with Abelian-symmetry-protected topological order are a restricted class of MF-preparable states. In two dimensions, we parametrize a subset of states with Abelian topological order that are MF preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation. Published by the American Physical Society2024 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. What can one infer about the dynamical evolution of quantum systems just by symmetry considerations? For Markovian dynamics in finite dimensions, we present a simple construction that assigns to each symmetry of the generator a family of scalar functions over quantum states that are monotonic under the time evolution. The aforementioned monotones can be utilized to identify states that are non-reachable from an initial state by the time evolution and include all constraints imposed by conserved quantities, providing a generalization of Noether's theorem for this class of dynamics. As a special case, the generator itself can be considered a symmetry, resulting in non-trivial constraints over the time evolution, even if all conserved quantities trivialize. The construction utilizes tools from quantum information-geometry, mainly the theory of monotone Riemannian metrics. We analyze the prototypical cases of dephasing and Davies generators. 
    more » « less