skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Mingjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Background Human populations native to high altitude exhibit numerous genetic adaptations to hypobaric hypoxia. Among Tibetan plateau peoples, these include increased vasodilation and uncoupling of erythropoiesis from hypoxia. Objective/Methods We tested the hypothesis that these high-altitude adaptations reduce risk for hypertension and diabetes-associated anemia among the Mosuo, a Tibetan-descended population in the mountains of Southwest China that is experiencing rapid economic change and increased chronic disease risk. Results Hypertension was substantially less common among Mosuo than low-altitude Han populations, and models fit to the Han predicted higher probability of hypertension than models fit to the Mosuo. Diabetes was positively associated with anemia among the Han, but not the Mosuo. Conclusion The Mosuo have lower risk for hypertension and diabetes-associated anemia than the Han, supporting the hypothesis that high-altitude adaptations affecting blood and circulation intersect with chronic disease processes to lower risk for these outcomes. As chronic diseases continue to grow as global health concerns, it is important to investigate how they may be affected by local genetic adaptations. 
    more » « less
  2. Women experience higher morbidity than men, despite living longer. This is often attributed to biological differences between the sexes; however, the majority of societies in which these disparities are observed exhibit gender norms that favor men. We tested the hypothesis that female-biased gender norms ameliorate gender disparities in health by comparing gender differences in inflammation and hypertension among the matrilineal and patrilineal Mosuo of China. Widely reported gender disparities in health were reversed among matrilineal Mosuo compared with patrilineal Mosuo, due to substantial improvements in women’s health, with no concomitant detrimental effects on men. These findings offer evidence that gender norms limiting women’s autonomy and biasing inheritance toward men adversely affect the health of women, increasing women’s risk for chronic diseases with tremendous global health impact. 
    more » « less