skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "FinnGen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. A search for flavor-changing neutral current interactions of the top quark ( t ) and the Higgs boson ( H ) is presented. The search is based on proton-proton collision data collected in 2016–2018 at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and corresponding to an integrated luminosity of 138 fb 1 . Events containing a pair of leptons with the same-sign electric charge and at least one jet are considered. The results are used to constrain the branching fraction ( B ) of the top quark decaying to a Higgs boson and an up ( u ) or charm ( c ) quark. No significant excess above the estimated background was found. The observed (expected) upper limits at a 95% confidence level are found to be 0.072% (0.059%) for B ( t H u ) and 0.043% (0.062%) for B ( t H c ) . These results are combined with two other searches performed by the CMS Collaboration for flavor-changing neutral current interactions of top quarks and Higgs bosons in final states where the Higgs boson decays to either a pair of photons or a pair of bottom quarks. The resulting observed (expected) upper limits at the 95% confidence level are 0.019% (0.027%) for B ( t H u ) and 0.037% (0.035%) for B ( t H c )
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited ( ψ ( 2 S ) ) and ground state ( J / ψ ) vector mesons is measured as a function of the charged-particle multiplicity in proton-lead ( p Pb ) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of 175 nb 1 were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range 6.5 < p T < 30 GeV and in four rapidity ranges spanning 2.865 < y CM < 1.935 . For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. The first search for a heavy neutral spin-1 gauge boson ( Z ) with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at s = 13 TeV , collected from 2016 to 2018 with the CMS experiment and corresponding to an integrated luminosity of 138 fb 1 . The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the Z boson and its branching fraction to τ τ or W W . The presence of a Z boson decaying to τ + τ ( W + W ) is excluded for masses up to 2.45(1.60) TeV, depending on the Z boson coupling to standard model weak bosons, and assuming a Z τ + τ ( W + W ) branching fraction of 50%. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  5. Charged hadron elliptic anisotropies ( v 2 ) are presented over a wide transverse momentum ( p T ) range for proton-lead ( p Pb ) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively. The data were recorded by the CMS experiment and correspond to integrated luminosities of 186 and 0.607 nb 1 for the p Pb and PbPb systems, respectively. A four-particle cumulant analysis is performed using subevents separated in pseudorapidity to effectively suppress noncollective effects. At high p T ( p T > 8 GeV ), significant positive v 2 values that are similar between p Pb and PbPb collisions at comparable charged particle multiplicities are observed. This observation suggests a common origin for the multiparticle collectivity for high- p T particles in the two systems. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  6. Incoherent J / ψ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( W γ N ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb 1 of data recorded by the CMS experiment. The measurement covers a wide W γ N range of 40 400 GeV , probing gluons carrying a fraction x of nucleon momentum down to an unexplored regime of 6.5 × 10 5 . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower x . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed W γ N and x range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the x -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  7. The polarization of the Λ and Λ ¯ hyperons along the beam direction has been measured in proton-lead ( p -Pb ) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of 186.0 ± 6.5 nb 1 . A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient P z , s 2 , is observed. The P z , s 2 values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed P z , s 2 values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the p -Pb results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  8. A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies s = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb 1 . Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant W W Z production and Z H production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75 0.29 + 0.34 and 1.74 0.60 + 0.71 are measured for s = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for s = 13.6 TeV , thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03 0.28 + 0.31 , with an observed (expected) significance of 4.5 (5.0) standard deviations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  9. A measurement of the W Z γ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of s = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb 1 . The analysis focuses on the final state with three charged leptons, ± ν + , where = e or μ , accompanied by an additional photon. The observed (expected) significance of the W Z γ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an ℓ originating from a tau lepton decay are excluded, to be 5.48 ± 1.11 fb , which is compatible with the prediction of 3.69 ± 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axionlike particles. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  10. PRD (Ed.)
    A search for heavy neutral gauge bosons ( Z ) decaying into a pair of tau leptons is performed in proton-proton collisions at s = 13 TeV at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of 138 fb 1 . The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the Z production cross section and its branching fraction to tau lepton pairs for a range of Z boson masses. For a narrow resonance in the sequential standard model scenario, a Z boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available June 1, 2026