skip to main content

Search for: All records

Creators/Authors contains: "Suchara, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce maximum-likelihood fragment tomography (MLFT) as an improved circuit cutting technique for running clustered quantum circuits on quantum devices with a limited number of qubits. In addition to minimizing the classical computing overhead of circuit cutting methods, MLFT finds the most likely probability distribution for the output of a quantum circuit, given the measurement data obtained from the circuit’s fragments. We demonstrate the benefits of MLFT for accurately estimating the output of a fragmented quantum circuit with numerical experiments on random unitary circuits. Finally, we show that circuit cutting can estimate the output of a clustered circuit withmore »higher fidelity than full circuit execution, thereby motivating the use of circuit cutting as a standard tool for running clustered circuits on quantum hardware.« less
    Free, publicly-accessible full text available December 1, 2022
  2. Simulating the time evolution of a physical system at quantum mechanical levels of detail - known as Hamiltonian Simulation (HS) - is an important and interesting problem across physics and chemistry. For this task, algorithms that run on quantum computers are known to be exponentially faster than classical algorithms; in fact, this application motivated Feynman to propose the construction of quantum computers. Nonetheless, there are challenges in reaching this performance potential. Prior work has focused on compiling circuits (quantum programs) for HS with the goal of maximizing either accuracy or gate cancellation. Our work proposes a compilation strategy that simultaneouslymore »advances both goals. At a high level, we use classical optimizations such as graph coloring and travelling salesperson to order the execution of quantum programs. Specifically, we group together mutually commuting terms in the Hamiltonian (a matrix characterizing the quantum mechanical system) to improve the accuracy of the simulation. We then rearrange the terms within each group to maximize gate cancellation in the final quantum circuit. These optimizations work together to improve HS performance and result in an average 40% reduction in circuit depth. This work advances the frontier of HS which in turn can advance physical and chemical modeling in both basic and applied sciences.« less
    Free, publicly-accessible full text available November 1, 2022
  3. Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuitsmore »that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.« less
  4. Variational quantum eigensolver (VQE) is a promising algorithm suitable for near-term quantum computers. VQE aims to approximate solutions to exponentially-sized optimization problems by executing a polynomial number of quantum subproblems. However, the number of subproblems scales as N 4 for typical problems of interest-a daunting growth rate that poses a serious limitation for emerging applications such as quantum computational chemistry. We mitigate this issue by exploiting the simultaneous measurability of subproblems corresponding to commuting terms. Our technique transpiles VQE instances into a format optimized for simultaneous measurement, ultimately yielding 8-30x lower cost. Our work also encompasses a synthesis tool formore »compiling simultaneous measurement circuits with minimal overhead. We demonstrate experimental validation of our techniques by estimating the ground state energy of deuteron with a quantum computer. We also investigate the underlying statistics of simultaneous measurement and devise an adaptive strategy for mitigating harmful covariance terms.« less
  5. We describe how classical supercomputing can aid unreliable quantum processors of intermediate size to solve large problem instances reliably. We advocate using a hybrid quantum-classical architecture where larger quantum circuits are broken into smaller sub-circuits that are evaluated separately, either using a quantum processor or a quantum simulator running on a classical supercomputer. Circuit compilation techniques that determine which qubits are simulated classically will greatly impact the system performance as well as provide a tradeoff between circuit reliability and runtime. We describe how classical supercomputing can aid unreliable quantum processors of intermediate size to solve large problem instances reliably. Wemore »advocate using a hybrid quantum-classical architecture where larger quantum circuits are broken into smaller sub-circuits that are evaluated separately, either using a quantum processor or a quantum simulator running on a classical supercomputer. Circuit compilation techniques that determine which qubits are simulated classically will greatly impact the system performance as well as provide a tradeoff between circuit reliability and runtime.« less