skip to main content

Search for: All records

Creators/Authors contains: "Sukumaran-Rajam, Aravind"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tucker decomposition is one of the SOTA CNN model compression techniques. However, unlike the FLOPs reduction, we observe very limited inference time reduction with Tucker-compressed models using existing GPU software such as cuDNN. To this end, we propose an efficient end-to-end framework that can generate highly accurate and compact CNN models via Tucker decomposition and optimized inference code on GPUs. Specifically, we propose an ADMM-based training algorithm that can achieve highly accurate Tucker-format models. We also develop a high-performance kernel for Tucker-format convolutions and analytical performance models to guide the selection of execution parameters. We further propose a co-design framework to determine the proper Tucker ranks driven by practical inference time (rather than FLOPs). Our evaluation on five modern CNNs with A100 demonstrates that our compressed models with our optimized code achieve up to 2.21× speedup over cuDNN, 1.12× speedup over TVM, and 3.27× over the original models using cuDNN with at most 0.05% accuracy loss.
    Free, publicly-accessible full text available February 21, 2024
  2. null (Ed.)