Shape-morphing structures that can reconfigure their shape to adapt to diverse tasks are highly desirable for intelligent machines in many interdisciplinary fields. Shape memory polymers are one of the most widely used stimuli-responsive materials, especially in 3D/4D printing, for fabricating shape-morphing systems. They typically go through a hot-programming step to obtain the shape-morphing capability, which possesses limited freedom of reconfigurability. Cold-programming, which directly deforms the structure into a temporary shape without increasing the temperature, is simple and more versatile but has stringent requirements on material properties. Here, we introduce grayscale digital light processing (g-DLP) based 3D printing as a simple and effective platform for fabricating shape-morphing structures with cold-programming capabilities. With the multimaterial-like printing capability of g-DLP, we develop heterogeneous hinge modules that can be cold-programmed by simply stretching at room temperature. Different configurations can be encoded during 3D printing with the variable distribution and direction of the modular-designed hinges. The hinge module allows controllable independent morphing enabled by cold programming. By leveraging the multimaterial-like printing capability, multi-shape morphing structures are presented. The g-DLP printing with cold-programming morphing strategy demonstrates enormous potential in the design and fabrication of shape-morphing structures.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Multimaterial additive manufacturing has important applications in various emerging fields. However, it is very challenging due to material and printing technology limitations. Here, we present a resin design strategy that can be used for single-vat single-cure grayscale digital light processing (g-DLP) 3D printing where light intensity can locally control the conversion of monomers to form from a highly stretchable soft organogel to a stiff thermoset within in a single layer of printing. The high modulus contrast and high stretchability can be realized simultaneously in a monolithic structure at a high printing speed (z-direction height 1 mm/min). We further demonstrate that the capability can enable previously unachievable or hard-to-achieve 3D printed structures for biomimetic designs, inflatable soft robots and actuators, and soft stretchable electronics. This resin design strategy thus provides a material solution in multimaterial additive manufacture for a variety of emerging applications.
-
Abstract In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state‐of‐the‐art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
-
Abstract Digital Light Processing (DLP) is a vat photopolymerization‐based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed‐loop recyclable ink is of great importance for sustainability. The low‐ceiling temperature alkyl‐substituted δ‐valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate‐functionalized poly(δ‐valerolactone) (PVLA), synthesized through the ring‐opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.
-
Abstract A depolymerizable vitrimer that allows both reprocessability and monomer recovery by a simple and scalable one‐pot two‐step synthesis of vitrimers from cyclic lactones is reported. Biobased
δ ‐valerolactone with alkyl substituents (δ ‐lactone) has low ceiling temperature; thus, their ring‐opening‐polymerized aliphatic polyesters are capable of depolymerizing back to monomers. In this work, the amorphous poly(δ ‐lactone) is solidified into an elastomer (i.e.,δ ‐lactone vitrimer) by a vinyl ether cross‐linker with dynamic acetal linkages, giving the merits of reprocessing and healing. Thermolysis of the bulkδ ‐lactone vitrimer at 200 °C can recover 85–90 wt% of the material, allowing reuse without losing value and achieving a successful closed‐loop life cycle. It further demonstrates that the new vitrimer has excellent properties, with the potential to serve as a biobased and sustainable replacement of conventional soft elastomers for various applications such as lenses, mold materials, soft robots, and microfluidic devices. -
Abstract Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
-
Origami folding and thin structure buckling are intensively studied for structural transformations with large packing ratio for various biomedical, robotic, and aerospace applications. The folding of circular rings has shown bistable snap‐through deformation under simple twisting motion and demonstrates a large area change to 11% of its undeformed configuration. Motivated by the large area change and the self‐guided deformation through snap‐folding, it is intended to design ring origami assemblies with unprecedented packing ratios. Herein, through finite‐element analysis, snap‐folding behaviors of single ring with different geometries (circular, elliptical, rounded rectangular, and rounded triangular shapes) are studied for ring origami assemblies for functional foldable structures. Geometric parameters' effects on the foldability, stability, and the packing ratio are investigated and are validated experimentally. With different rings as basic building blocks, the folding of ring origami assemblies including linear‐patterned rounded rectangular rings, radial‐patterned elliptical rings, and 3D crossing circular rings is further experimentally demonstrated, which show significant packing ratios of 7% and 2.5% of the initial areas, and 0.3% of the initial volume, respectively. It is envisioned that the reported snap‐folding of origami rings will provide alternative strategies to design foldable/deployable structures and devices with reliable self‐guided deformation and large area change.