skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sun, Ya-Ping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon–semiconductor hybrid quantum dots are classical carbon dots with core carbon nanoparticles doped with a selected nanoscale semiconductor. Specifically, on those with the nanoscale TiO2 doping, denoted as CTiO2-Dots, their synthesis and thorough characterization were reported previously. In this work, the CTiO2-Dots were evaluated for their visible light-activated antibacterial function, with the results showing the effective killing of not only Gram-positive but also the generally more resistant Gram-negative bacteria. The hybrid dots are clearly more potent antibacterial agents than their neat carbon dot counterparts. Mechanistically, the higher antibacterial performance of the CTiO2-Dots is attributed to their superior photoexcited state properties, which are reflected by the observed much brighter fluorescence emissions. Also considered and discussed is the possibility of additional contributions to the antibacterial activities due to the photosensitization of the nanoscale TiO2 by its doped core carbon nanoparticles.

     
    more » « less
  2. Carbon dots (CDots) are generally defined as small carbon nanoparticles (CNPs) with effective surface passivation, for which the classical synthesis is the functionalization of pre-existing CNPs with organic molecules. However, “dot” samples produced by “one-pot” thermal carbonization of organic precursors are also popular in the literature. These carbonization-produced samples may contain nano-carbon domains embedded in organic matters from the precursors that survived the thermal processing, which may be considered and denoted as “nano-carbon/organic hybrids”. Recent experimental evidence indicated that the two different kinds of dot samples are largely divergent in their photo-induced antibacterial functions. In this work, three representative carbonization-produced samples from the precursor of citric acid–oligomeric polyethylenimine mixture with processing conditions of 200 °C for 3 h (CS200), 330 °C for 6 h (CS330), and microwave heating (CSMT) were compared with the classically synthesized CDots on their photo-induced antiviral activities. The results suggest major divergences in the activities between the different samples. Interestingly, CSMT also exhibited significant differences between antibacterial and antiviral activities. The mechanistic origins of the divergences were explored, with the results of different antimicrobial activities among the hybrid samples rationalized in terms of the degree of carbonization in the sample production and the different sample structural and morphological characteristics.

     
    more » « less
  3. Carbon dots (CDots) are small carbon nanoparticles with effective surface passivation by organic functionalization. In the reported work, the surface functionalization of preexisting small carbon nanoparticles with N-ethylcarbazole (NEC) was achieved by the NEC radical addition. Due to the major difference in microwave absorption between the carbon nanoparticles and organic species such as NEC, the nanoparticles could be selectively heated via microwave irradiation to enable the hydrogen abstraction in NEC to generate NEC radicals, followed by in situ additions of the radicals to the nanoparticles. The resulting NEC-CDots were characterized by microscopy and spectroscopy techniques including quantitative proton and 13C NMR methods. The optical spectroscopic properties of the dot sample were found to be largely the same as those of CDots from other organic functionalization schemes. The high structural stability of NEC-CDots benefiting from the radical addition functionalization is highlighted and discussed. 
    more » « less
  4. Carbon dots (CDots) of small carbon nanoparticles with oligomeric polyethylenimine for surface functionalization, coupled with visible light exposure, were found highly effective in the inactivation of bacterial pathogens. In this study, using a representative strain of a major foodborne pathogen – Listeria monocytogenes , as a target, the effects of the CDots treatment at sublethal concentrations on bacterial functions/behaviors related to the biofilm formation ability/potential, including cell attachment and swimming motility, were assessed. On the consequence at molecular level, the expression levels of the genes that are related to cell attachment/adhesion, motility, flagellar synthesis, quorum sensing, and environmental stress response and virulence were found all being up-regulated. 
    more » « less
  5. The carbon/TiO2 hybrid dots (C/TiO2-Dots) are structurally TiO2 nanoparticles (in the order of 25 nm in diameter from commercially available colloidal TiO2 samples) surface-attached by nanoscale carbon domains with organic moieties, thus equivalent to hybrids of individual TiO2 nanoparticles each decorated with many carbon dots. These hybrid dots with exposure to visible light exhibit potent antibacterial properties, similar to those found in neat carbon dots with the same light activation. The results from the use of established scavengers for reactive oxygen species (ROS) to “quench” the antibacterial activities, an indication for shared mechanistic origins, are also similar. The findings in experiments on probing biological consequences of the antibacterial action suggest that the visible light-activated C/TiO2-Dots cause significant damage to the bacterial cell membrane, resulting in higher permeability, with the associated oxidative stress leading to lipid peroxidation, inhibiting bacterial growth. The induced bacterial cell damage could be observed more directly in the transmission electron microscopy (TEM) imaging. Opportunities for the further development of the hybrid dots platform for a variety of antibacterial applications are discussed. 
    more » « less
  6. Carbon dots (CDots) are generally defined as small-carbon nanoparticles with surface organic functionalization and their classical synthesis is literally the functionalization of preexisting carbon nanoparticles. Other than these “classically defined CDots”, however, the majority of the dot samples reported in the literature were prepared by thermal carbonization of organic precursors in mostly “one-pot” processing. In this work, thermal processing of the selected precursors intended for carbonization was performed with conditions of 200 °C for 3 h, 330 °C for 6 h, and heating by microwave irradiation, yielding samples denoted as CS200, CS330, and CSMT, respectively. These samples are structurally different from the classical CDots and should be considered as “nano-carbon/organic hybrids”. Their optical spectroscopic properties were found comparable to those of the classical CDots, but very different in the related photoinduced antibacterial activities. Mechanistic origins of the divergence were explored, with the results suggesting major factors associated with the structural and morphological characteristics of the hybrids. 
    more » « less
  7. Carbon “quantum” dots or carbon dots (CDots) exploit and enhance the intrinsic photoexcited state properties and processes of small carbon nanoparticles via effective nanoparticle surface passivation by chemical functionalization with organic species. The optical properties and photoinduced redox characteristics of CDots are competitive to those of established conventional semiconductor quantum dots and also fullerenes and other carbon nanomaterials. Highlighted here are major advances in the exploration of CDots for their serving as high-performance yet nontoxic fluorescence probes for one- and multi-photon bioimaging in vitro and in vivo, and for their uniquely potent antimicrobial function to inactivate effectively and efficiently some of the toughest bacterial pathogens and viruses under visible/natural or ambient light conditions. Opportunities and challenges in the further development of the CDots platform and related technologies are discussed. 
    more » « less