Wearable robotics, also called exoskeletons, have been engineered for human-centered assistance for decades. They provide assistive technologies for maintaining and improving patients’ natural capabilities towards self-independence and also enable new therapy solutions for rehabilitation towards pervasive health. Upper limb exoskeletons can significantly enhance human manipulation with environments, which is crucial to patients’ independence, self-esteem, and quality of life. For long-term use in both in-hospital and at-home settings, there are still needs for new technologies with high comfort, biocompatibility, and operability. The recent progress in soft robotics has initiated soft exoskeletons (also called exosuits), which are based on controllable and compliant materials and structures. Remarkable literature reviews have been performed for rigid exoskeletons ranging from robot design to different practical applications. Due to the emerging state, few have been focused on soft upper limb exoskeletons. This paper aims to provide a systematic review of the recent progress in wearable upper limb robotics including both rigid and soft exoskeletons with a focus on their designs and applications in various pervasive healthcare settings. The technical needs for wearable robots are carefully reviewed and the assistance and rehabilitation that can be enhanced by wearable robotics are particularly discussed. The knowledge from rigid wearable robots may provide practical experience and inspire new ideas for soft exoskeleton designs. We also discuss the challenges and opportunities of wearable assistive robotics for pervasive health.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Subsurface drainage has been widely accepted to mitigate the hazard of landslides in areas prone to flooding. Specifically, the use of drainage wells with pumping systems has been recognized as an effective short-term solution to lower the groundwater table. However, this method has not been well considered for long-term purposes due to potentially high labor costs. This study aims to investigate the idea of an autonomous pumping system for subsurface drainage by leveraging conventional geotechnical engineering solutions and a deep learning technique—Long-Short Term Memory (LSTM)—to establish a geotechnical cyber-physical system for rainfall-induced landslide prevention. For this purpose, a typical soil slope equipped with three pumps was considered in a computer simulation. Forty-eight cases of rainfall events with a wide range of varieties in duration, total rainfall depths, and different rainfall patterns were generated. For each rainfall event, transient seepage analysis was performed using newly proposed Python code to obtain the corresponding pump’s flow rate data. A policy of water pumping for maintaining groundwater at a desired level was assigned to the pumps to generate the data. The LSTM takes rainfall event data as the input and predicts the required pump’s flow rate. The results from the trained model were validated using evaluation metrics of root mean square error (RMSE), mean absolute error (MAE), and R2. The R2-scores of 0.958, 0.962, and 0.954 for the predicted flow rates of the three pumps exhibited high accuracy of the predictions using the trained LSTM model. This study is intended to make a pioneering step toward reaching an autonomous pumping system and lowering the operational costs in controlling geosystems.more » « less
-
Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often induces signal distortion for high-variation signals such as ECG. In our method, the discrete curvature estimation is adapted to represent the signal variation for the purpose of mitigating signal distortion. By adaptively designing the proper SG filter according to the discrete curvature for each data sample, the proposed method still retains the intrinsic advantage of SG filters of excellent data smoothing and further tackles the challenge of denoising high signal variations with low signal distortion. In our experiment, we compared our method with the EMD-wavelet based method and the non-local means (NLM) denoising method in the performance of both noise elimination and signal distortion reduction. Particularly, for the signal distortion reduction, our method decreases in MSE by 33.33% when compared to EMD-wavelet and by 50% when compared to NLM, and decreases in PRD by 18.25% when compared to EMD-wavelet and by 25.24% when compared to NLM. Our method shows high potential and feasibility in wide applications of ECG denoising for both clinical use and consumer electronics.more » « less