skip to main content

Search for: All records

Creators/Authors contains: "Sun, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available October 11, 2024
  4. Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024
  7. Abstract

    A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.

    more » « less
    Free, publicly-accessible full text available May 1, 2024
  8. The implementation of synthetic polymer membranes in gas separations, ranging from natural gas sweetening, hydrogen separation, helium recovery, carbon capture, oxygen/nitrogen enrichment, etc. , has stimulated the vigorous development of high-performance membrane materials. However, size-sieving types of synthetic polymer membranes are frequently subject to a trade-off between permeability and selectivity, primarily due to the lack of ability to boost fractional free volume while simultaneously controlling the micropore size distribution. Herein, we review recent research progress on microporosity manipulation in high-free-volume polymeric gas separation membranes and their gas separation performance, with an emphasis on membranes with hourglass-shaped or bimodally distributed microcavities. State-of-the-art strategies to construct tailorable and hierarchically microporous structures, microporosity characterization, and microcavity architecture that govern gas separation performance are systematically summarized. 
    more » « less
    Free, publicly-accessible full text available March 6, 2024