skip to main content


This content will become publicly available on October 11, 2024

Title: Domain-knowledge Inspired Pseudo Supervision (DIPS) for unsupervised image-to-image translation models to support cross-domain classification
Award ID(s):
2300317
NSF-PAR ID:
10483292
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Engineering Applications of Artificial Intelligence
Volume:
127
Issue:
PA
ISSN:
0952-1976
Page Range / eLocation ID:
107255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Corrosion of materials impacts critical economic sectors from infrastructure, transportation, defense, health, to the environment. The development of safe anti-corrosive materials is thus an important area of study in materials science. Corrosion science of preparing materials and then monitoring their corrosion under adverse conditions is labor intensive, time consuming, and extremely costly. While deep learning has become popular in automating various engineering tasks, the development of deep models for corrosion assessment is lacking. We are the first to study deep domain adaptation (DA) models for the automated assessment of the corrosion status of anti-corrosive materials. Corrosion data, i.e., photographic images of treated corroding materials, is abundant when produced in artificially controlled laboratory settings, while corrosion image data sets from rich natural outdoor environments are more challenging to produce and thus much smaller. We leverage the more readily available indoor corrosion data to train a classifier and then transfer it via deep domain adaptation to also perform well on the small yet more realistic outdoor corrosion image data set – without requiring target labels. We empirically compare 5 popular domain adaptation models on real-world corrosion image data sets. Our study finds that DA achieves 27% improvement in test accuracy compared to the performance of the no-DA baseline for classifying real-world outdoor corrosion data. 
    more » « less
  2. Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from source to target. We propose to preserve the relative similarities and differences between instances in the source via a novel cross-domain distance consistency loss. To further reduce overfitting, we present an anchor-based strategy to encourage different levels of realism over different regions in the latent space. With extensive results in both photorealistic and non-photorealistic domains, we demonstrate qualitatively and quantitatively that our few-shot model automatically discovers correspondences between source and target domains and generates more diverse and realistic images than previous methods. 
    more » « less