skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Yuanyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We proposed a Wollaston-prism-based snapshot phase-shifting diffraction phase microscope (WP-SPDPM) for low-coherence snapshot quantitative phase imaging and videography. Wollaston prism separates two orthogonally linearly polarized beams with high degrees of polarization at a sufficiently small separation angle; one of the beams passing through a pinhole serves as the reference beam. Four phase-shifted interferograms are simultaneously acquired with a polarization camera to accurately retrieve a high spatial resolution phase map. The system is nearly common-path in configuration and can achieve a large slope range and high accuracy. In addition to the ability to resist environmental noise, the WP-SPDPM is suitable for phase measurement using low-coherence light. The accuracy and large measurable slope range of the proposed system is validated and compared experimentally with a commercial profilometer. We believe WP-SPDPM is a powerful tool for the accurate and robust quantitative phase measurement and has a significant potential of the real-time phase imaging. 
    more » « less
  2. Abstract A detailed uplift history of the Tibetan Plateau is essential for disentangling the proposed geodynamical models and assessing its impacts on climate and biodiversity. However, when and how the plateau formed remains highly controversial. Here, we present unusual geochemical indicators of marine signatures in the Cenozoic terrestrial strata of the Qaidam Basin, northern Tibetan Plateau, with strong implications for the basin altitude. Our investigations across the basin reveal typical marine alkenones and anomalously high carbonate carbon isotopic values during the mid-Miocene, but not at earlier stages, which are accompanied by a divergent trend in the paired carbonate oxygen and leaf wax hydrogen isotopic records. We infer an incursion of seawater into the Qaidam Basin, thus constraining the mid-Miocene basin altitude close to sea level. Hence, much of the substantial northern plateau uplift afterwards appears to be associated with the outward growth of the Tibetan Plateau. 
    more » « less
  3. null (Ed.)