skip to main content


Search for: All records

Creators/Authors contains: "Surratt, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2025
  2. Abstract Number: 99 Working Group: Aerosol Chemistry Abstract Isoprene, the largest non-methane volatile organic species emitted into Earth’s atmosphere, reacts with hydroxyl radicals to initiate formation of secondary organic aerosol (SOA). Under low nitric oxide conditions, the major oxidative pathway proceeds through acid catalyzed reactive uptake of isoprene-epoxydiol isomers (IEPOX). We have recently established the structures of the semivolatile C5H10O3 uptake products (formerly designated “C5-alkene triols) of cis- and trans-β-IEPOX as 3-methylenebutane-1,2,4-triol and isomeric 3-methyltetrahydrofuran-2,4-diols. Importantly, both uptake products showed significant partitioning into the gas phase. Here, we report evidence that the uptake products along with their gas phase oxidation products constitute a hitherto unrecognized source of SOA. We show that partitioning into the gas phase results in further oxidation into low volatility products, including highly oxygenated C5-polyols, organosulfates, and dimers. In the chamber studies, gas phase products were characterized by online by iodide-Chemical Ionization Mass Spectrometry (I-CIMS) and particle phase products by offline analysis of filter extracts by HILIC/(-)ESI-HR-QTOFMS using authentic standards. The chamber studies show the potential for a substantial contribution to SOA from reactive uptake of the second generation gas phase oxidation products onto both acidified and non-acidified ammonium bisulfate seed aerosols. Identification of these previously unrecognized early-generation oxidation products will improve estimates of atmospheric carbon distribution and advance our understanding of the fate of isoprene oxidation products in the atmosphere. 
    more » « less
    Free, publicly-accessible full text available October 2, 2024
  3. Abstract Number: 51 Working Group: Aerosol Chemistry Abstract Isoprene, a volatile organic compound (VOC) is emitted largely by vegetation at a rate of 512 Tg/yr. Based on theoretical calculations and mass spectrometric evidence, Z-δ-hydroperoxyalkenal structures (HPALD1 and HPALD2) have been assigned to C5H8O3 gas-phase compounds accounting for up to 12% of the total first-generation isoprene oxidation products. The putative HPALDs are conjugated carbonyls expected to have a significant absorption cross section at ambient UV wavelengths (> 315 nm). Fast internal energy transfer from the excited alkenal to the O-OH bond is predicted to cause rapid bond dissociation degradation into volatile fragments, with little or no formation of SOA. We undertook synthesis of HPALD2 to verify the structure assigned solely from mass spectrometry. By proton NMR, HPALD2 exists exclusively as the peroxyhemiacetal tautomer, with no carbonyl detected, even in D2O. Tautomerization to the cyclic peroxyhemiacetal is strongly favored by the Z geometry of HPALD2. The peroxyhemiacetal structure of the isoprene photochemical oxidation product was confirmed by matching the IMS drift time of the synthetic standard with a major C5H8O3 product from hydroxyl radical oxidation of isoprene. Lacking the conjugated chromophore, the peroxyhemiacetal does not absorb at > 250 nm will persist at ambient UV wavelengths. In chamber experiments, OH oxidation caused rapid nucleation in the absence of seed, and reactive uptake in the presence of both (NH4)2SO4 and (NH4)HSO4 seed. Products at m/z C5H8O5, C5H10O5, C5H10O6 were detected by on-line monitoring of the gas phase by an iodide-CIMS-high resolution time-of-flight mass spectrometer (HR-ToF-MS). Analysis of filter extracts by hydrophilic interaction liquid chromatography coupled to an electrospray ionization HR-ToF-MS detector operated in the negative mode showed major products with compositions C5H10O5 in all experiments, and major sulfated products with compositions C5H10O8S and C3H6O6S in seeded experiments. 
    more » « less
    Free, publicly-accessible full text available October 2, 2024
  4. Abstract Number: 327 Working Group: Aerosol Chemistry Abstract Low-pH aerosols comprise a large fraction of atmospheric fine particulate matter. The effects of pH on secondary organic aerosol (SOA) formation are not well understood, in part because of the difficulty of accurately measuring aerosol pH. Of particular interest are the atmospherically-abundant isoprene epoxydiols (IEPOX), which undergo acid-driven reactions to form SOA. Models have assumed no upper limit for IEPOX-SOA formation rates as acidity increases. However, recent work has shown that organosulfate formation from IEPOX slows as the equilibrium of inorganic sulfate (Sulfinorg) shifts from sulfate (SO42-) towards bisulfate (HSO4-), which is a weaker nucleophile. We performed a series of trans-ß-IEPOX uptake experiments with ammonium sulfate seed solutions acidified to between pH 0 and 3, and modelled time-resolved methyltetrol (MT) and methyltetrol sulfate (MTS) formation and Sulfinorg consumption (kMT = 0.018 M-2 s-1, kMTS = 0.28 M-2 s-1). We found an inflection point between pH 1 and 1.4, below which MT formation dominates and above which MTS formation dominates, consistent with a changing balance of protonated and deprotonated Sulfinorg. Modelled MT and MTS formation fit the experimental data well both above and below the inflection point except at pH 1.4, where it significantly underpredicted the data at low initial IEPOX/Sulfinorg ratios. This indicates multi-phase chemical dynamics beyond those represented in our model, leading to very efficient IEPOX-SOA formation at pH 1.4. Further investigation is warranted into the connection of IEPOX-SOA formation with initial IEPOX/Sulfinorg ratio and aerosol pH. 
    more » « less
    Free, publicly-accessible full text available October 2, 2024
  5. Abstract. We report improved synthetic routes to the isomericisoprene-derived β-epoxydiols (β-IEPOX) in high yield(57 %–69 %) from inexpensive, readily available starting compounds. Thesyntheses do not require the protection/deprotection steps or time-consumingpurification of intermediates and can readily be scaled up to yield thetarget IEPOX isomers in gram quantities. Emissions of isoprene(2-methyl-1,3-butadiene, C5H8), primarily from deciduousvegetation, constitute the largest source of nonmethane atmospherichydrocarbons. In the gas phase under low-nitric-oxide (NO) conditions,addition of the atmospheric hydroxyl radical (OH) followed by rapid addition ofO2 yields isoprene-derived hydroxyperoxyl radicals. The major sink(>90 %) for the peroxyl radicals is a sequential reaction withthe hydroperoxyl radical (HO2), OH, and O2, which is then followed bythe elimination of OH to yield a ∼2:1 mixture ofcis- and trans-(2-methyloxirane-2,3-diyl)dimethanol (cis- and trans-β-IEPOX). The IEPOXisomers account for about 80 % of closed-shell hydroxyperoxylproducts and are rapidly taken up into acidic aerosols to form secondaryorganic aerosol (SOA). IEPOX-derived SOA makes a significant masscontribution to fine particulate matter (PM2.5), which is known to be amajor factor in climate forcing as well as adversely affecting respiratory andcardiovascular systems of exposed populations. Prediction of ambientPM2.5 composition and distribution, both in regional- and global-scaleatmospheric chemistry models, crucially depends on the accuracy ofidentification and quantitation of uptake product formation. Accessibilityof authentic cis- and trans-β-IEPOX in high purity and in large quantity forlaboratory studies underpins progress in developing models as well asidentification and quantitation of PM2.5 components.

     
    more » « less
  6. The ability of an atmospheric aerosol to take up water or to participate in heterogeneous reactions is highly influenced by its phase state – solid, semi-solid, or liquid. These changes in phase state can be predicted by glass transition temperature (Tg), as particles at temperatures below their Tg will show solid properties, while increasing the temperature above their Tg will allow for semi-solid and eventually liquid properties. Historically, measurements of the Tg of bulk materials have been studied in order to model the phase states of aerosols in the atmosphere; however, these methods only permit an estimation of aerosol Tg based on their bulk chemical composition. Determining the Tg of individual particles will allow for more accurate model predictions of aerosol phase state. Herein, we apply a recently developed method utilizing a nano-thermal analysis (nanoTA) module coupled to an atomic force microscope (AFM), to determine the Tg of individual secondary organic aerosol (SOA) particles generated from the reactive uptake of isoprene epoxydiol (IEPOX) onto acidic ammonium sulfate aerosol particles. NanoTA works by using a specialized AFM probe which can be heated while in contact with a particle of interest. As the temperature increases, the probe deflection will first increase due to thermal expansion of the particle followed by a decrease at its melting temperature (Tm). The Tg of the particle can then be determined from Tm using the Boyer–Beaman rule. We compared the Tg of IEPOX-derived SOA particles generated at relative humidity (RH) of 30, 65, and 80%, and found that increasing RH from 30 to 80% led to a decrease in average Tg of 22 K, indicating less viscous particles at higher RH conditions. Our measurements with this technique will allow for more accurate representations of the phase state of aerosols in the atmosphere. 
    more » « less
    Free, publicly-accessible full text available October 2, 2024
  7. Abstract Number: 381 Working Group: Instrumentation and Methods Abstract The phase state of atmospheric aerosol particles – solid, semi-solid, or liquid – influences their ability to take up water and participate in heterogeneous chemical reactions. Changes in phase state have been predicted by glass transition temperature (Tg) and viscosity; however, direct measurements of these properties is challenging for sub-micron particles. Historically, bulk measurements have been used, but this does not account for particle-to-particle variation or the impacts of particle size. Melting temperature (Tm) is the most significant predictor of Tg, and the two properties can be related through the Boyer-Beaman rule. Herein, we apply a recently developed method utilizing a nano-thermal analysis (nanoTA) module coupled to an atomic force microscope (AFM), to determine the Tm of individual secondary organic aerosol (SOA) particles generated from the reactive uptake of isoprene-derived epoxydiols (IEPOX) onto acidic ammonium sulfate aerosol particles. NanoTA works by using a specialized AFM probe which can be heated while in contact with a particle of interest. As the temperature increases, the probe deflection will first increase due to thermal expansion of the particle followed by a decrease at its Tm. The direct measurements are compared with model predictions based on molecular composition from hydrophilic interaction liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOF-MS) analysis. We compared the Tm of the SOA particles formed from IEPOX uptake onto acidic ammonium sulfate particles created at 30, 65, and 80% relative humidity (RH), and found that increasing RH from 30 to 80% led to an overall decrease in average Tm, indicating less viscous particles at higher RH conditions. Our measurements with this technique will allow for more accurate representations of the phase state of aerosols in the atmosphere. 
    more » « less
    Free, publicly-accessible full text available October 2, 2024
  8. Abstract Number: 453 Working Group: Aerosol Chemistry Abstract Secondary organic aerosol (SOA) is composed of a significant fraction of low-volatility high-molecular-weight oligomer products. These species can affect particle viscosity, morphology, and mixing timescales, yet they are not very well understood. While strides have been made in elucidating oligomer formation mechanisms, their degradation is less studied. Previous work suggests that the presence of oligomers may suppress particle mass loss during atmospheric aging by slowing the production high-volatility fragments from monomers. Our work investigates the effects of relative humidity (RH) on oligomer formation in SOA and the effects of hydroxyl radical (·OH) exposure on oligomer degradation. To probe these questions, SOA is generated by the reactive uptake of isoprene epoxydiols (IEPOX) onto acidic ammonium sulfate aerosol in a 2-m3 steady-state chamber, followed by exposure to ·OH in an oxidation flow reactor. We investigate SOA formation at 30-80% RH, which is above and below the deliquescence point of ammonium sulfate. We examine the evolution of SOA bulk chemical composition as well as single-particle physicochemical properties over the course of aging using mass spectrometry-, spectroscopy-, and microscopy-based techniques. An optimized matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method is used to identify and track the presence of oligomers in SOA over the course of aging. Our research will provide insight about the formation and degradation of oligomers in the atmosphere, which will allow better modeling of their impact on climate. 
    more » « less
  9. Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10). 
    more » « less
    Free, publicly-accessible full text available November 20, 2024
  10. Heterogeneous hydroxyl radical (•OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition. It was recently demonstrated that heterogeneous •OH oxidation can age single-component particulate methyltetrol sulfates (MTSs), causing ∼55% of the SOA mass loss. However, our most recent study of freshly generated IEPOX-SOA particulate mixtures suggests that the lifetime of the complete IEPOX-SOA mixture against heterogeneous •OH oxidation can be prolonged through the fragmentation of higher-order oligomers. Published studies suggest that the heterogeneous •OH oxidation of IEPOX SOA could affect the organic atmospheric aerosol budget at varying rates, depending on aerosol chemical composition. However, heterogeneous •OH oxidation kinetics for the full IEPOX-SOA particulate mixture have not been reported. Here, we exposed freshly generated IEPOX-SOA particles to heterogeneous oxidation by •OH under humid conditions (relative humidity ∼57%) for 0−15 atmospheric-equivalent days of aging and derived an effective heterogeneous •OH rate coefficient (kOH) of 2.64 ± 0.4 × 10−13 cm^3 molecules−1 s−1. While ∼44% of particulate organic mass of nonoxidized IEPOX-SOA was consumed over the entire 15 day aging period, only <7% was consumed during the initial 10 aging days. By molecular-level chemical analysis, we determined oligomers were consumed at a faster rate (by a factor of 2−4) than monomers. Analysis of aerosol physicochemical properties shows that IEPOX-SOA has a core−shell morphology, and the shell becomes thinner with •OH oxidation. In summary, this study demonstrates that heterogeneous •OH oxidation of IEPOX-SOA particles is a dynamic process in which aerosol chemical composition and physicochemical properties play important roles. 
    more » « less
    Free, publicly-accessible full text available October 19, 2024