skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sushko, Peter V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 11, 2026
  2. Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO3/LaFeO3superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe3+(3d5). Here, we synthesized a series of epitaxial LaNiO3/LaFeO3superlattices and demonstrated partial (up to ~0.5 e/interface unit cell) charge transfer from Fe to Ni near the interface, supported by density functional theory simulations and spectroscopic evidence of changes in Ni and Fe oxidation states. The electron transfer from LaFeO3to LaNiO3and the subsequent rearrangement of the Fe 3d band create an unexpected metallic ground state within the LaFeO3layer, strongly influencing the in-plane transport properties across the superlattice. Moreover, we establish a direct correlation between interfacial charge transfer and in-plane electrical transport properties, providing insights for designing functional oxide heterostructures with emerging properties. 
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  3. null (Ed.)
    Abstract Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation. 
    more » « less