Abstract Intrinsic exchange bias is known as the unidirectional exchange anisotropy that emerges in a nominally single-component ferro-(ferri-)magnetic system. In this work, with magnetic and structural characterizations, we demonstrate that intrinsic exchange bias is a general phenomenon in (Ni, Co, Fe)-based spinel oxide films deposited on -Al2O3(0001) substrates, due to the emergence of a rock-salt interfacial layer consisting of antiferromagnetic CoO from interfacial reconstruction. We show that in NixCoyFe3−x−yO4(111)/ -Al2O3(0001) films, intrinsic exchange bias and interfacial reconstruction have consistent dependences on Co concentrationy, while the Ni and Fe concentration appears to be less important. This work establishes a family of intrinsic exchange bias materials with great tunability by stoichiometry and highlights the strategy of interface engineering in controlling material functionalities. 
                        more » 
                        « less   
                    This content will become publicly available on December 20, 2025
                            
                            Interfacial charge transfer and its impact on transport properties of LaNiO 3 /LaFeO 3 superlattices
                        
                    
    
            Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO3/LaFeO3superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe3+(3d5). Here, we synthesized a series of epitaxial LaNiO3/LaFeO3superlattices and demonstrated partial (up to ~0.5 e−/interface unit cell) charge transfer from Fe to Ni near the interface, supported by density functional theory simulations and spectroscopic evidence of changes in Ni and Fe oxidation states. The electron transfer from LaFeO3to LaNiO3and the subsequent rearrangement of the Fe 3d band create an unexpected metallic ground state within the LaFeO3layer, strongly influencing the in-plane transport properties across the superlattice. Moreover, we establish a direct correlation between interfacial charge transfer and in-plane electrical transport properties, providing insights for designing functional oxide heterostructures with emerging properties. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011401
- PAR ID:
- 10589985
- Publisher / Repository:
- Sci. Adv.
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 51
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Solid oxide electrolysis cells (SOECs) are promising for the selective electrochemical conversion of CO 2 , or mixed streams of CO 2 and H 2 O, into high energy products such as CO and H 2 . However, these systems are limited by the poor redox stability of the state-of-the-art Ni-based cathode electrocatalysts. Due to their favorable redox properties, mixed ionic-electronic conducting (MIEC) oxides have been considered as promising alternatives. However, improvement of the electrochemical performance of MIEC-based SOEC electrocatalysts is needed and requires an understanding of the factors that govern their activity. Herein, we investigate the effect of B-site 3 d metal cations (Cr, Fe, Co, Ni) of LaBO 3 perovskites on their CO 2 electrochemical reduction activity in SOECs. We find that their electrochemical performance is highly dependent on the nature of the B-site cation and trends as LaFeO 3 > LaCoO 3 > LaNiO 3 > LaCrO 3 . Among these perovskites, LaNiO 3 is the least stable and decomposes under electrochemical conditions. In situ characterization and ab initio theoretical calculations suggest that both the nature of the B-site cation and the presence of oxygen surface vacancies impact the energetics of CO 2 adsorption and reduction. These studies provide fundamental insights critical toward devising ways to improve the performance of MIEC-based SOEC cathodes for CO 2 electroreduction.more » « less
- 
            Abstract Van der Waals interactions in 2D materials have enabled the realization of nanoelectronics with high‐density vertical integration. Yet, poor energy transport through such 2D–2D and 2D–3D interfaces can limit a device's performance due to overheating. One long‐standing question in the field is how different encapsulating layers (e.g., contact metals or gate oxides) contribute to the thermal transport at the interface of 2D materials with their 3D substrates. Here, a novel self‐heating/self‐sensing electrical thermometry platform is developed based on atomically thin, metallic Ti3C2MXene sheets, which enables experimental investigation of the thermal transport at a Ti3C2/SiO2interface, with and without an aluminum oxide (AlOx) encapsulating layer. It is found that at room temperature, the thermal boundary conductance (TBC) increases from 10.8 to 19.5 MW m−2K−1upon AlOxencapsulation. Boltzmann transport modeling reveals that the TBC can be understood as a series combination of an external resistance between the MXene and the substrate, due to the coupling of low‐frequency flexural acoustic (ZA) phonons to substrate modes, and an internal resistance between ZA and in‐plane phonon modes. It is revealed that internal resistance is a bottle‐neck to heat removal and that encapsulation speeds up the heat transfer into low‐frequency ZA modes and reduces their depopulation, thus increasing the effective TBC.more » « less
- 
            A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1atn ≈ 8 × 1015 cm−3) for β‐Ga2O3is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties.more » « less
- 
            Abstract The ability to produce atomically precise, artificial oxide heterostructures allows for the possibility of producing exotic phases and enhanced susceptibilities not found in parent materials. Typical ferroelectric materials either exhibit large saturation polarization away from a phase boundary or large dielectric susceptibility near a phase boundary. Both large ferroelectric polarization and dielectric permittivity are attained wherein fully epitaxial (PbZr0.8Ti0.2O3)n/(PbZr0.4Ti0.6O3)2n(n= 2, 4, 6, 8, 16 unit cells) superlattices are produced such that the overall film chemistry is at the morphotropic phase boundary, but constitutive layers are not. Long‐ (n≥ 6) and short‐period (n= 2) superlattices reveal large ferroelectric saturation polarization (Ps= 64 µC cm−2) and small dielectric permittivity (εr≈ 400 at 10 kHz). Intermediate‐period (n= 4) superlattices, however, exhibit both large ferroelectric saturation polarization (Ps= 64 µC cm−2) and dielectric permittivity (εr= 776 at 10 kHz). First‐order reversal curve analysis reveals the presence of switching distributions for each parent layer and a third, interfacial layer wherein superlattice periodicity modulates the volume fraction of each switching distribution and thus the overall material response. This reveals that deterministic creation of artificial superlattices is an effective pathway for designing materials with enhanced responses to applied bias.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
