Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The effect of DNA methylation on gene expression has been known for decades. However, the mechanism by which DNA methylation functions to repress transcription has remained a major question in the field. Wang et al. now narrow this gap through their examination of the methylation binding protein MBD2 and expose how DNA methylation is read upstream of transcriptional repression.more » « less
-
Abstract Recent large-scale societal disruptions, from the COVID-19 pandemic to intensifying wildfires and weather events, reveal the importance of transforming governance systems so they can address complex, transboundary, and rapidly evolving crises. Yet current knowledge of the decision-making dynamics that yield transformative governance remains scant. Studies typically focus on the aggregate outputs of government decisions, while overlooking their micro-level underpinnings. This is a key oversight because drivers of policy change, such as learning or competition, are prosecuted by people rather than organizations. We respond to this knowledge gap by introducing a new analytical lens for understanding policymaking, aimed at uncovering how characteristics of decision-makers and the structure of their relationships affect their likelihood of effectuating transformative policy responses. This perspective emphasizes the need for a more dynamic and relational view on urban governance in the context of transformation.more » « less
-
The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops. Often considered to be genome ‘parasites’, transposable elements (TEs) evolved to insert their DNA seamlessly into genomes. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean—a major global crop in need of targeted insertion technology. We have engineered a TE ‘parasite’ into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes.more » « less
An official website of the United States government
