skip to main content


Search for: All records

Creators/Authors contains: "Sweet, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    The cooccurrence of coastal and riverine flooding leads to compound events with substantial impacts on people and property in low‐lying coastal areas. Climate change could increase the level of compound flood hazard through higher extreme sea levels and river flows. Here, a bivariate flood hazard assessment method is proposed to estimate compound coastal‐riverine frequency under current and future climate conditions. A copula‐based approach is used to estimate the joint return period (JRP) of compound floods by incorporating sea‐level rise (SLR) and changes in peak river flows into the marginal distributions of flood drivers. Specifically, the changes in JRP of compound major coastal‐riverine flooding defined based on simultaneous exceedances above major coastal and riverine thresholds, are explored by midcentury. Subsequently, the increase in the probability of occurrence of at least one compound major coastal‐riverine flooding for a given period of time is quantified. The proposed compound flood hazard assessment is conducted at 26 paired tidal‐riverine stations along the Contiguous United States coast with long‐term data and defined flood thresholds. We show that the northeast Atlantic and the western part of the Gulf coasts are experiencing the highest compound major coastal‐riverine flood probability under current conditions. However, future SLR scenarios show the highest frequency amplification along the southeast Atlantic coast. The impact of changes in peak river flows is found to be considerably less than that of SLR. Climate change impacts, especially SLR, may lead to more frequent compound events, which cannot be ignored for future adaptation responses in estuary regions.

     
    more » « less
  3. Abstract

    Flood exposure is increasing in coastal communities due to rising sea levels. Understanding the effects of sea level rise (SLR) on frequency and consequences of coastal flooding and subsequent social and economic impacts is of utmost importance for policymakers to implement effective adaptation strategies. Effective strategies may consider impacts from cumulative losses from minor flooding as well as acute losses from major events. In the present study, a statistically coherent Mixture Normal‐Generalized Pareto Distribution model was developed, which reconciles the probabilistic characteristics of the upper tail as well as the bulk of the sea level data. The nonstationary sea level condition was incorporated in the mixture model using Quantile Regression method to characterize variable Generalized Pareto Distribution thresholds as a function of SLR. The performance validity of the mixture model was corroborated for 68 tidal stations along the Contiguous United States (CONUS) coast with long‐term observed data. The method was subsequently employed to assess existing and future coastal minor and major flood frequencies. The results indicate that the frequency of minor and major flooding will increase along all CONUS coastal regions in response to SLR. By the end of the century, under the “Intermediate” SLR scenario, major flooding is anticipated to occur with return period less than a year throughout the coastal CONUS. However, these changes vary geographically and temporally. The mixture model was reconciled with the property exposure curve to characterize how SLR might influence Average Annual Exposure to coastal flooding in 20 major CONUS coastal cities.

     
    more » « less
  4. Sea‐level rise sits at the frontier of usable climate climate change research, because it involves natural and human systems with long lags, irreversible losses, and deep uncertainty. For example, many of the measures to adapt to sea‐level rise involve infrastructure and land‐use decisions, which can have multigenerational lifetimes and will further influence responses in both natural and human systems. Thus, sea‐level science has increasingly grappled with the implications of (1) deep uncertainty in future climate system projections, particularly of human emissions and ice sheet dynamics; (2) the overlay of slow trends and high‐frequency variability (e.g., tides and storms) that give rise to many of the most relevant impacts; (3) the effects of changing sea level on the physical exposure and vulnerability of ecological and socioeconomic systems; and (4) the challenges of engaging stakeholder communities with the scientific process in a way that genuinely increases the utility of the science for adaptation decision making. Much fundamental climate system research remains to be done, but many of the most critical issues sit at the intersection of natural sciences, social sciences, engineering, decision science, and political economy. Addressing these issues demands a better understanding of the coupled interactions of mean and extreme sea levels, coastal geomorphology, economics, and migration; decision‐first approaches that identify and focus research upon those scientific uncertainties most relevant to concrete adaptation choices; and a political economy that allows usable science to become used science.

     
    more » « less
  5. Lumpkin, Rick (Ed.)