skip to main content


Title: Usable Science for Managing the Risks of Sea‐Level Rise

Sea‐level rise sits at the frontier of usable climate climate change research, because it involves natural and human systems with long lags, irreversible losses, and deep uncertainty. For example, many of the measures to adapt to sea‐level rise involve infrastructure and land‐use decisions, which can have multigenerational lifetimes and will further influence responses in both natural and human systems. Thus, sea‐level science has increasingly grappled with the implications of (1) deep uncertainty in future climate system projections, particularly of human emissions and ice sheet dynamics; (2) the overlay of slow trends and high‐frequency variability (e.g., tides and storms) that give rise to many of the most relevant impacts; (3) the effects of changing sea level on the physical exposure and vulnerability of ecological and socioeconomic systems; and (4) the challenges of engaging stakeholder communities with the scientific process in a way that genuinely increases the utility of the science for adaptation decision making. Much fundamental climate system research remains to be done, but many of the most critical issues sit at the intersection of natural sciences, social sciences, engineering, decision science, and political economy. Addressing these issues demands a better understanding of the coupled interactions of mean and extreme sea levels, coastal geomorphology, economics, and migration; decision‐first approaches that identify and focus research upon those scientific uncertainties most relevant to concrete adaptation choices; and a political economy that allows usable science to become used science.

 
more » « less
Award ID(s):
1633557 1663807 1805029
NSF-PAR ID:
10375349
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
7
Issue:
12
ISSN:
2328-4277
Page Range / eLocation ID:
p. 1235-1269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sea level rise (SLR) may impose substantial economic costs to coastal communities worldwide, but characterizing its global impact remains challenging because SLR costs depend heavily on natural characteristics and human investments at each location – including topography, the spatial distribution of assets, and local adaptation decisions. To date, several impact models have been developed to estimate the global costs of SLR. Yet, the limited availability of open-source and modular platforms that easily ingest up-to-date socioeconomic and physical data sources restricts the ability of existing systems to incorporate new insights transparently. In this paper, we present a modular, open-source platform designed to address this need, providing end-to-end transparency from global input data to a scalable least-cost optimization framework that estimates adaptation and net SLR costs for nearly 10 000 global coastline segments and administrative regions. Our approach accounts both for uncertainty in the magnitude of global mean sea level (g.m.s.l.) rise and spatial variability in local relative sea level rise. Using this platform, we evaluate costs across 230 possible socioeconomic and SLR trajectories in the 21st century. According to the latest Intergovernmental Panel on Climate Change Assessment Report (AR6), g.m.s.l. is likely to rise during the 21st century by 0.40–0.69 m if late-century warming reaches 2 ∘C and by 0.58–0.91 m with 4 ∘C of warming (Fox-Kemper et al., 2021). With no forward-looking adaptation, we estimate that annual costs of sea level rise associated with a 2 ∘C scenario will likely fall between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP, respectively) by 2100, depending on socioeconomic and sea level rise trajectories. Cost-effective, proactive adaptation would provide substantial benefits, lowering these values to between USD 110 and USD 530 billion (0.02 and 0.06 %) under an optimal adaptation scenario. For the likely SLR trajectories associated with 4 ∘C warming, these costs range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no forward-looking adaptation and USD 200 billion to USD 750 billion (0.04 % to 0.09 %) under optimal adaptation. The Intergovernmental Panel on Climate Change (IPCC) notes that deeply uncertain physical processes like marine ice cliff instability could drive substantially higher global sea level rise, potentially approaching 2.0 m by 2100 in very high emission scenarios. Accordingly, we also model the impacts of 1.5 and 2.0 m g.m.s.l. rises by 2100; the associated annual cost estimates range from USD 11.2 to 30.6 trillion (1.2 % and 7.6 %) under no forward-looking adaptation and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under optimal adaptation. Our modeling platform used to generate these estimates is publicly available in an effort to spur research collaboration and support decision-making, with segment-level physical and socioeconomic input characteristics provided at https://doi.org/10.5281/zenodo.7693868 (Bolliger et al., 2023a) and model results at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b).

     
    more » « less
  2. Global sea level rise (SLR) may present the most urgent climate change adaptation challenge facing coastal communities today. The direction is clear, impacts are manifesting now, and the pace of rise is likely to accelerate. As a result, many coastal communities have begun planning their adaptation response and some are quite far along in the process. At the same time, evolving science provides new observations, models, and understanding of land-ocean dynamics that can increase clarity while also in many ways increase uncertainty about the scope, timing, and regional nature of SLR. The planning, design, and construction of water infrastructure has a relatively long timeline (up to 30 years), and thus the evolution of scientific knowledge presents challenges for communities already planning for SLR based on previous information. When does science become actionable for decision-makers? Are there characteristics or thresholds that could cause communities decide to move from one set of scenarios to another, or change approaches altogether? This talk focuses on two important studies different in kind but dominating the conversation about SLR adaptation planning today. First, DeConto and Pollard (2016) have suggested significantly higher upper end projections for Antarctic ice sheet melt, which increase both global and regional SLR above most previously assumed upper limits. Second, probabilistic projections using model output and expert elicitation as presented in Kopp et al (2014) are increasingly appearing in federal reports and planning-related documents. These two papers are pushing the boundaries of the science-to-planning interface, while the application of this work as actionable science is far from settled. This talk will present the outcome of recent conversations among our diverse author team. The authors are engaged in SLR planning related contexts from many angles and perspectives and include the aforementioned Kopp and DeConto as well as representatives of the City of San Francisco, Army Corps of Engineers, Environmental Protection Agency, and engineering consultant community. Attendees of this session will hear a presentation demonstrating co-production in process, including topics about which the authors have and have not agreed upon to date, with some attention to next steps in the process. 
    more » « less
  3. Abstract As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding. 
    more » « less
  4. Abstract

    Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020–2030 frames our ability to perform vital and far‐reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1–4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant‐based medicines, and green infrastructure. Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a parts store that supports tinkering and supports query, prediction, and rapid‐response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non‐invasive imaging, sensors, and plug‐and‐play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence‐assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

     
    more » « less
  5. As the prospect of average global warming exceeding 1.5°C becomes increasingly likely, interest in supplementing mitigation and adaptation with solar geoengineering (SG) responses will almost certainly rise. For example stratospheric aerosol injection to cool the planet could offset some of the warming for a given accumulation of atmospheric greenhouse gases ( 1 ). However, the physical and social science literature on SG remains modest compared with mitigation and adaptation. We outline three research themes for advancing policy-relevant social science related to SG: (i) SG costs, benefits, risks, and uncertainty; (ii) the political economy of SG deployment; and (iii) SG’s role in a climate strategy portfolio. 
    more » « less