skip to main content

Search for: All records

Creators/Authors contains: "Sznaier, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available March 1, 2023
  4. Peak estimation bounds extreme values of a function of state along trajectories of a dynamical system. This paper focuses on extending peak estimation to continuous and discrete settings with time-independent and time-dependent uncertainty. Techniques from optimal control are used to incorporate uncertainty into an existing occupation measure-based peak estimation framework, which includes special consideration for handling switching-type (polytopic) uncertainties. The resulting infinite-dimensional linear programs can be solved approximately with Linear Matrix Inequalities arising from the moment-SOS hierarchy.
  5. We consider the problem of finding the lowest order stable rational transfer function that interpolates a set of given noisy time and frequency domain data points. Our main result shows that exploiting results from rational interpolation theory allows for recasting this problem as minimizing the rank of a matrix constructed from the frequency domain data (the Loewner matrix) along with the Hankel matrix of time domain data, subject to a semidefinite constraint that enforces stability and consistency between the time and frequency domain data. These results are applied to a practical problem: identifying a system from noisy measurements of its time and frequency responses. The proposed method is able to obtain stable low order models using substantially smaller matrices than those reported earlier and consequently in a fraction of the computation time.