Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Co-fractionation mass spectrometry (CFMS) enables the discovery of protein complexes and the systems-level analysis of multimer dynamics that facilitate responses to environmental and developmental conditions. A major challenge in CFMS data analysis, and omics approaches in general, is the development of reliable benchmarks for accurate evaluation of prediction methods. CORUM is commonly used as a source of benchmark complexes for protein complex composition predictions; however, its assumption of fully assembled subunit pools often conflicts with size exclusion chromatography (SEC) and interaction predictions from CFMS experiments. To address this, we developed an integrative analysis method that leverages cross-kingdom evolutionary conservation among specific CORUM complexes and high-resolution SEC profile data from cell extracts. The resulting benchmark complexes are supported by statistical significance and consistent sizes between calculated and measured apparent masses. The approach was robust, revealing both conserved and species-specific complexes. Designed specifically for benchmark identification, this method can be applied to any species and used to evaluate protein complex predictions from other studies.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract BackgroundMorphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date. ResultsHere, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules – growth, shrinkage, catastrophe, and rescue – to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells. ConclusionOur modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array.more » « less
-
Abstract This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on and the method is available as a service through the BisQue portal.more » « less
-
Chen, Tsu-Wei; Long, Stephen P (Ed.)Abstract Highly polarized cotton fibre cells that develop from the seed coat surface are the foundation of a multi-billion-dollar international textile industry. The unicellular trichoblast emerges as a hemispherical bulge that is efficiently converted to a narrower and elongated shape that extends for about 2 weeks before transitioning into a cellulose-generating machine. The polarized elongation phase employs an evolutionarily conserved microtubule-cellulose synthase control module that patterns the cell wall and enables highly anisotropic diffuse growth. As the multi-scale interactions and feedback controls among cytoskeletal systems, morphologically potent cell wall properties, and a changing cell geometry are uncovered, opportunities emerge to engineer architectural traits. However, in cotton, such efforts are hampered by insufficient knowledge about the underlying control mechanisms. For example, fibre diameter is an important trait that is determined during the earliest stages of development, but the basic growth mode and the mechanisms by which cytoskeletal and cell wall systems mediate fibre tapering are not known. This paper combines multiparametric and multiscale fibre phenotyping and finite element computational modelling of a growing cell to discover an evolutionarily conserved tapering mechanism. The actin network interconverts between two distinct longitudinal organizations that broadly distributes organelles and likely enables matrix secretion patterns that maintain cell wall thickness during growth. Based on plausible finite element models and quantitative analyses of the microtubule cytoskeleton, tapering and anisotropic growth is programmed by a constricting apical microtubule depletion zone and highly aligned microtubules along the fibre shaft. The finite element model points to a central role for tensile forces in the cell wall to dictate the densities and orientations of morphologically potent microtubules that pattern the cell wall.more » « less
-
ABSTRACT Multicellular organisms use dedicator of cytokinesis (DOCK) family guanine nucleotide exchange factors (GEFs) to activate Rac/Rho-of-plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here, we use combinations of transgene complementation and live-cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid-binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of a tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.more » « less
-
Abstract Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking, cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mechanisms of cellular homeostasis and system-level control. This is of great biological importance and practical significance in heterotrophic rice (Oryza sativa) endosperm and aleurone–subaleurone tissues, which are a primary source of seed vitamins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant endosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this study was to broadly predict protein complex composition in the aleurone–subaleurone layers of developing rice seeds using co-fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of protein elution profiles were subjected to distance-based clustering to enable large-scale multimerization state measurements and protein complex predictions. The predicted complexes had predicted functions across diverse functional categories, including novel heteromeric RNA binding protein complexes that may influence seed quality. This effective and open-ended proteomics pipeline provides useful clues about system-level posttranslational control during the early stages of rice seed development.more » « less
-
Abstract Mechanical properties, size and geometry of cells, and internal turgor pressure greatly influence cell morphogenesis. Computational models of cell growth require values for wall elastic modulus and turgor pressure, but very few experiments have been designed to validate the results using measurements that deform the entire thickness of the cell wall. New wall material is synthesized at the inner surface of the cell such that full-thickness deformations are needed to quantify relevant changes associated with cell development. Here, we present an integrated, experimental–computational approach to analyze quantitatively the variation of elastic bending behavior in the primary cell wall of living Arabidopsis (Arabidopsis thaliana) pavement cells and to measure turgor pressure within cells under different osmotic conditions. This approach used laser scanning confocal microscopy to measure the 3D geometry of single pavement cells and indentation experiments to probe the local mechanical responses across the periclinal wall. The experimental results were matched iteratively using a finite element model of the experiment to determine the local mechanical properties and turgor pressure. The resulting modulus distribution along the periclinal wall was nonuniform across the leaf cells studied. These results were consistent with the characteristics of plant cell walls which have a heterogeneous organization. The results and model allowed the magnitude and orientation of cell wall stress to be predicted quantitatively. The methods also serve as a reference for future work to analyze the morphogenetic behaviors of plant cells in terms of the heterogeneity and anisotropy of cell walls.more » « less
-
null (Ed.)Whole-genome duplications are common during evolution, creating genetic redundancy that can enable cellular innovations. Novel protein-protein interactions provide a route to diversified gene functions, but, at present, there is limited proteome-scale knowledge on the extent to which variability in protein complex formation drives neofunctionalization. Here, we used protein correlation profiling to test for variability in apparent mass among thousands of orthologous proteins isolated from diverse species and cell types. Variants in protein complex size were unexpectedly common, in some cases appearing after relatively recent whole-genome duplications or an allopolyploidy event. In other instances, variants such as those in the carbonic anhydrase orthologous group reflected the neofunctionalization of ancient paralogs that have been preserved in extant species. Our results demonstrate that homo- and heteromer formation have the potential to drive neofunctionalization in diverse classes of enzymes, signaling, and structural proteins.more » « less
-
Abstract Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.more » « less