- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
01000030000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Tabb, Amy (4)
-
Biassou, Nadia (1)
-
Dardick, Chris (1)
-
Duncan, Keith E. (1)
-
Hadiarto, Toto (1)
-
Hollender, Courtney A. (1)
-
Jabin, Pierre-Emmanuel (1)
-
Lavi, Orit (1)
-
Liu, Zhongchi (1)
-
Medeiros, Henry (1)
-
Pascal, Thierry (1)
-
Scorza, Ralph (1)
-
Siddique, Abubakar (1)
-
Srinivasan, Chinnathambi (1)
-
Teolis, Spencer (1)
-
Topp, Christopher N. (1)
-
Wang, Wanpeng (1)
-
Zhu, Junxi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Convolutional neural networks trained using manually generated labels are commonly used for semantic or instance segmentation. In precision agriculture, automated flower detection methods use supervised models and post-processing techniques that may not perform consistently as the appearance of the flowers and the data acquisition conditions vary. We propose a self-supervised learning strategy to enhance the sensitivity of segmentation models to different flower species using automatically generated pseudo-labels. We employ a data augmentation and refinement approach to improve the accuracy of the model predictions. The augmented semantic predictions are then converted to panoptic pseudo-labels to iteratively train a multi-task model. The self-supervised model predictions can be refined with existing post-processing approaches to further improve their accuracy. An evaluation on a multi-species fruit tree flower dataset demonstrates that our method outperforms state-of-the-art models without computationally expensive post-processing steps, providing a new baseline for flower detection applications.more » « less
-
Zhu, Junxi ; Teolis, Spencer ; Biassou, Nadia ; Tabb, Amy ; Jabin, Pierre-Emmanuel ; Lavi, Orit ( , IEEE Transactions on Pattern Analysis and Machine Intelligence)
-
Tabb, Amy ; Duncan, Keith E. ; Topp, Christopher N. ( , 2018 IEEE Winter Conference on Applications of Computer Vision (WACV))
-
Hollender, Courtney A. ; Pascal, Thierry ; Tabb, Amy ; Hadiarto, Toto ; Srinivasan, Chinnathambi ; Wang, Wanpeng ; Liu, Zhongchi ; Scorza, Ralph ; Dardick, Chris ( , Proceedings of the National Academy of Sciences)