We present a study of the central zone of the star-forming region L1448 at 217–230 GHz (∼1.3 mm) using Atacama Large Millimeter Array observations. Our study focuses on the detection of proto-stellar molecular outflows and the interaction with the surrounding medium towards sources L1448–C(N) and L1448–C(S). Both sources exhibit continuum emission, with L1448–C(N) being the brightest one. Based on its spectral index and the associated bipolar outflow, the continuum emission is the most likely to be associated with a circumstellar disk. The 12CO(J = 2→1) and SiO(J = 5→4) emissions associated with L1448–C(N) trace a bipolar outflow and a jet oriented along the northwest-southeast direction. The 12CO(J = 2→1) outflow for L1448–C(N) has a wide-open angle and a V-shape morphology. The SiO jet is highly collimated and has an axial extent comparable with the 12CO(J = 2→1) emission. There is not SiO(J = 5→4) emission towards L1448–C(S), but there is 12CO(J = 2→1) emission. The observations revealed that the red-shifted lobes of the 12CO(J = 2→1) outflows of L1448–C(N) and L1448–C(S) are colliding. As a result of this interaction, the L1448-C(S) lobe seems to be truncated. The collision of the molecular outflows is also hinted by the SiO(J = 5→4) emission, where the velocity dispersion increases significantly in the interaction zone. We also investigated whether it could be possible that this collision triggers the formation of new stars in the L1448–C system.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30
α emission, this structure mainly traces ionized gas. However, there is evidence for ∼30M ⊙of dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80M ⊙. A strong velocity gradient in the H30α emission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass ofm *∼ 40M ⊙forming from a core with initial massM c ∼ 300M ⊙in a clump with mass surface density of Σcl∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1M ⊙found from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster. -
Abstract We studied the central region of bipolar nebula M 2-9 using radio-continuum observations obtained from the Jansky Very Large Array (JVLA) and the Atacama Large Millimeter Array (ALMA) interferometers. This work presents new images at ∼43 GHz (∼7.0 mm) and ∼345 GHz (∼0.9 mm) with angular resolutions of $\sim {0{^{\prime \prime}_{.}}047}$ and ${0{^{\prime \prime}_{.}}09}$, respectively. The continuum emission at ∼43 GHz shows an elongated jet-like structure perpendicular to the ∼345 GHz observation. We conclude that both emissions could correspond to tracing an isothermal collimated fast wind with constant expansion velocity and being driven by the circumstellar ring traced by ALMA. Although this configuration has been discussed within the scope of planetary nebulae models, there is a remarkable fact: the collimated fast wind shows morphological spatial variability. This supports the idea of a symbiotic binary system within the innermost part of M 2-9, which would be composed of a white dwarf and an AGB star. The latter could explain the mirror symmetry observed at larger scales due to their orbital motion.
-
ABSTRACT NGC 4395 is a dwarf galaxy at a distance of about 4.3 Mpc (scale: ∼0.021 pc mas−1). It hosts an intermediate-mass black hole (IMBH) with a mass between ∼104 and ∼105 solar masses. The early radio observations of NGC 4395 with the very long baseline interferometry (VLBI) network, High Sensitivity Array (HSA), at 1.4 GHz in 2005 showed that its nucleus has a sub-mJy outflow-like feature (E) extending over 15 mas. To probe the possibility of the feature E as a continuous jet with a base physically coupled with the accretion disc, we performed deep VLBI observations with the European VLBI Network (EVN) at 5 GHz, and analysed the archival data obtained with the HSA at 1.4 GHz in 2008, NSF’s Karl G. Jansky Very Large Array (VLA) at 12–18 GHz and the Atacama Large Millimetre/submillimetre Array (ALMA) at 237 GHz. The feature E displays more diffuse structure in the HSA image of 2008 and has no compact substructure detected in the EVN image. Together with the optically thin steep spectrum and the extremely large angular offset (about 220 mas) from the accurate optical Gaia position, we explain the feature E as nuclear shocks likely formed by the IMBH’s episodic ejection or wide-angle outflow. The VLA and ALMA observations find a sub-mJy pc-scale diffuse feature, possibly tracing a thermal free–free emission region near the IMBH. There is no detection of a jet base at the IMBH position in the VLBI maps. The non-detections give an extremely low luminosity of ≤4.7 × 1033 erg s−1 at 5 GHz and indicate no evidence of a disc-jet coupling on sub-pc scales.
-
ABSTRACT In this paper, we present the results of a morphological study performed on a sample of 28 ultracompact H ii (UC H ii) regions located near extended free–free emission, using radio continuum (RC) observations at 3.6 cm with the C and D Very Large Array (VLA) configurations, with the aim of determining a direct connection between them. By using previously published observations in B and D VLA configurations, we compiled a final catalogue of 21 UC H ii regions directly connected with the surrounding extended emission (EE). The observed morphology of most of the UC H ii regions in RC emission is irregular (single- or multipeaked sources) and resembles a classical bubble structure in the Galactic plane with well-defined cometary arcs. RC images superimposed on colour composite Spitzer images reinforce the assignations of direct connection by the spatial coincidence between the UC components and regions of saturated 24 μm emission. We also find that the presence of EE may be crucial to understand the observed infrared excess because an underestimation of ionizing Lyman photons was considered in previous works (e.g. Wood & Churchwell; Kurtz, Churchwell & Wood).