Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 6, 2025
-
The hippocampus is a crucial brain structure involved in memory formation, spatial navigation, emotional regulation, and learning. An accurate MRI image segmentation of the human hippocampus plays an important role in multiple neuro-imaging research and clinical practice, such as diagnosing neurological diseases and guiding surgical interventions. While most hippocampus segmentation studies focus on using T1-weighted or T2-weighted MRI scans, we explore the use of diffusion-weighted MRI (dMRI), which offers unique insights into the microstructural properties of the hippocampus. Particularly, we utilize various anisotropy measures derived from diffusion MRI (dMRI), including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, for a multi-contrast deep learning approach to hippocampus segmentation. To exploit the unique benefits offered by various contrasts in dMRI images for accurate hippocampus segmentation, we introduce an innovative multimodal deep learning architecture integrating cross-attention mechanisms. Our proposed framework comprises a multi-head encoder designed to transform each contrast of dMRI images into distinct latent spaces, generating separate image feature maps. Subsequently, we employ a gated cross-attention unit following the encoder, which facilitates the creation of attention maps between every pair of image contrasts. These attention maps serve to enrich the feature maps, thereby enhancing their effectiveness for the segmentation task. In the final stage, a decoder is employed to produce segmentation predictions utilizing the attention-enhanced feature maps. The experimental outcomes demonstrate the efficacy of our framework in hippocampus segmentation and highlight the benefits of using multi-contrast images over single-contrast images in diffusion MRI image segmentation.more » « less
-
As one of the popular deep learning methods, deep convolutional neural networks (DCNNs) have been widely adopted in segmentation tasks and have received positive feedback. However, in segmentation tasks, DCNN-based frameworks are known for their incompetence in dealing with global relations within imaging features. Although several techniques have been proposed to enhance the global reasoning of DCNN, these models are either not able to gain satisfying performances compared with traditional fully-convolutional structures or not capable of utilizing the basic advantages of CNN-based networks (namely the ability of local reasoning). In this study, compared with current attempts to combine FCNs and global reasoning methods, we fully extracted the ability of self-attention by designing a novel attention mechanism for 3D computation and proposed a new segmentation framework (named 3DTU) for three-dimensional medical image segmentation tasks. This new framework processes images in an end-to-end manner and executes 3D computation on both the encoder side (which contains a 3D transformer) and the decoder side (which is based on a 3D DCNN). We tested our framework on two independent datasets that consist of 3D MRI and CT images. Experimental results clearly demonstrate that our method outperforms several state-of-the-art segmentation methods in various metrics.more » « less