Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources.more » « less
-
GIS data layer on crop field boundary has many applications in agricultural research, ecosystem study, crop monitoring, and land management. Crop field boundary mapping through field survey is not time and cost effective for vast agriculture areas. Onscreen digitization on fine-resolution satellite image is also labor-intensive and error-prone. The recent development in image segmentation based on their spectral characteristics is promising for cropland boundary detection. However, processing of large volume multi-band satellite images often required high-performance computation systems. This study utilized crop rotation information for the delineation of field boundaries. In this study, crop field boundaries of Iowa in the United States are extracted using multi-year (2007-2018) CDL data. The process is simple compared to boundary extraction from multi-date remote sensing data. Although this process was unable to distinguish some adjacent fields, the overall accuracy is promising. Utilization of advanced geoprocessing algorithms and tools on polygon correction may improve the result significantly. Extracted field boundaries are validated by superimposing on fine resolution Google Earth images. The result shows that crop field boundaries can easily be extracted with reasonable accuracy using crop rotation information.more » « less
-
The remote-sensing based Flood Crop Loss Assessment Service System (RF-CLASS) is a web service based system developed and managed by the Center for Spatial Information Science and Systems (CSISS). The system uses Moderate Resolution Imaging Spectroradiometer (MODIS)-based flood data, which was implemented by the Dartmouth Flood Observatory (DFO), to provide an estimation of crop loss from floods. However, due to the spectral similarity between water and shadow, a noticeable amount of false classification of shadow can be found in the DFO flood products. Traditional methods can be utilized to remove cloud shadow and part of mountain shadow. This paper aims to develop an algorithm to filter out noise from permanent mountain shadow in the flood layer. The result indicates that mountain shadow was significantly removed by using the proposed approach. In addition, the gold standard test indicated a small number of actual water surfaces were misidentified by the proposed algorithm. Furthermore, experiments also suggest that increasing the spatial resolution of the slope helped reduce more noise in mountains. The proposed algorithm achieved acceptable overall accuracy (>80%) in all different filters and higher overall accuracies were observed when using lower slope filters. This research is one of the very first discussions on identifying false flood classification from terrain shadow by using the highly efficient method.more » « less
-
WaterSmart project is an NSF funded projected seeks water consumption reduction using satellite observations. In order to fit the fine temporal resolution requirement, satellites are required to have a high revisit cycle. MODIS is an ideal platform for monitoring the ground thanks to its daily coverage while the spatial resolution is too coarse. Research has demonstrated the possibility to improve the spatial resolution of MODIS using the Landsat 8 images. This research is aimed to establish a workflow to adapt the data fusion algorithm to achieve automatically processing at real-time in order to support short-term decision making.more » « less
An official website of the United States government
