Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 17, 2026
-
Free, publicly-accessible full text available February 19, 2026
-
Abstract Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non‐covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub‐angstrom differences in the counter‐ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal‐coordination HCP (m‐HCP) motif. Single‐crystal X‐ray diffraction (SCXRD) analysis of HCP−Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m‐HCP structure was demonstrated by the successful synthesis of HCP−K. Finally, ion‐exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter‐ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.more » « less
-
null (Ed.)Abstract The spin- $$\frac{1}{2}$$ 1 2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We find that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu 4 (OH) 6 FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin order on the spin- $$\frac{1}{2}$$ 1 2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q = 0 magnetic order. Partially Zn-substituted barlowite (Cu 3.44 Zn 0.56 (OH) 6 FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu 2+ impurities are above the percolation threshold for the interlayer lattice and they couple more strongly to the nearest kagome moment. This system is a unique playground displaying QSL, VBC, and spin order, furthering our understanding of these highly competitive quantum states.more » « less